Building Resilience to Flooding and Climate Change in the Moonlight Brook Watershed

Robert Roseen, Jake Sahl, Waterstone Engineering Nigel Pickering, Rich Claytor, Horsley Witten Group

DOWNPOURS AND DROUGHT, Climate Adaption Workgroup October 26, 2016

Funding Source: NOAA Office for Coastal Management NH Department of Environmental Services Coastal Program

PROJECT TEAM

Robert Roseen, Project Director Jake Sahl, Modeler and Analyst

Rich Claytor, Project Design Nigel Pickering, Project Review

Diane Hardy, Town Planner Rick Malasky, Public Works Director Steve Fournier, Town Administrator

Kirsten Howard, Coastal Program Project Manager Steve Couture, Supervisor

MAY 16, 2006 MOTHERS DAY STORM

15 Highest Events – Daily Discharges on Lamprey River near Newmarket

Rank	Data	Discharge		
	Date	(cfs)		
1	16-May-06	8400		
	15-May-06	7600		
2	18-Apr-07	7590		
	17-Apr-07	7410		
3	7-Apr-87	7360		
	8-Apr-87	5920		
	6-Apr-87	5460		
4	16-Mar-10	6550		
	17-Mar-10	5610		
	15-Mar-10	4810		
5	22-Oct-96	6310		
	23-Oct-96	6150		
6	17-May-06	6240		
7	20-Mar-36	5270		
	21-Mar-36	4690		
8	1-Apr-10	5240		
	31-Mar-10	4600		
9	19-Apr-07	4830		
10	27-Feb-10	4640		
11	15-Mar-77	4620		
12	3-Apr-04	4550		
13	16-Jun-98	4500		
	15 Jun 00	1100		

Of 15 largest events since 1934: 11 have occurred in last 25 years 10 have occurred in last 15 years 7 have occurred in last 5 years

Primary Causes of Runoff Increase

CAUSES

- Land Use Changes→Increase in impervious cover
- Changes in storm depth, duration, and frequency→Increased rainfall depth and runoff volume
 SOLUTIONS
- Land use management strategies to mitigate runoff volumes

The New Orleans Hurricane Protection System: What Went Wrong and Why-- 10 Lessons Learned from Katrina by the ASCE Hurricane Katrina External Review Panel and the USACE Interagency Performance Evaluation Task Force

- Failure to think globally and act locally-We must account for climate change
- 2. Failure to absorb new knowledge
- 3. Failure to understand, manage, and communicate risk-Need to take rigorous risk based approach,
- 4. Failure to build quality in
- 5. Failure to build in resilience
- 6. Failure to provide redundancy
- 7. Failure to see that the sum of many parts does not equal a system
- 8. The buck couldn't find a place to stop--Poor organization, lack of accountability
- 9. Beware of interfaces: materials and jurisdiction
- 10. Follow the money-People responsible for design and construction had no control of the monies.

OBJECTIVES

- Study flood risk

 associated with climate
 change and how future
 development and build out of the community
 affect these risks,
- 2. Design green infrastructure (GI) practices within the watershed to help reduce the risk of flooding while reducing pollutant load

- 1. To provide an illustration of the types and quantities of BMPs that could be used to reduce flooding.
- Provide cost performance on BMPs for cost effectiveness, unit costs (\$/ft3 reduced), total minimum optimized cost, flood mapping for volume and the duration.
- 3. Develop a GI final design that can be used for construction.
- 4. Green Infrastructure will also provide water quality benefits to:
 - a. promote groundwater and stream recharge,
 - b. maintain stream water temperatures and
 - c. reduce nutrient, sediment and bacterial pollution

LAMPREY STUDY OF 2100 CONDITION

MOONLIGHT BROOK

SCENARIOS								
	No-Piscassic	With Piscassic Bypass	Design Storm Depth (Inches)					
2005/2015	Current	Current +307 CFS	8.75					
2005/2015	Current without New Road	Current with New Road +307 CFS	8.75					
2050	LID/Conventional	LID/Conventional +307 CFS	8.75					
2050	LID/Conventional	LID/Conventional +612 CFS	10.06*					

*CRHC Recommendation for +15% of existing

CURVE NUMBER CURRENT

CN 2050 CONV

CN 2050 LID

FLOOD MITIGATION STRATEGIES AND BENEFITS

LID as a Climate Adaptation Tool

RELATIVE INFLUENT VOLUME AND NITROGEN LOADS TO STORMWATER BMPS

(5)

RELATIVE EFFLUENT VOLUME AND NITROGEN LOADS DISCHARGED FROM STORMWATER BMPS

BMP OPTIMIZATION

•1 system treating a 1" water quality volume for 1 acre will reduce runoff volume by approximately 0.83 MG/acre/year.

•At nearly equivalent costs, you will get approximately 212% increase in volume reduction.

•4 smaller systems treating ¼" WQV from 4 acres will each reduce runoff volume by 0.44 MG/acre/year for a total of 1.76 MG per year

LAND USE SCALE OPTIMIZATION

This process enables the identification of the **maximum extent practicable (MEP)**, or the point at which cost effectiveness is greatest and feasibility begins to decline.

PEAK FLOW AND % REDUCTION

FLOOD CONDITIONS FOR CURRENT, W/ AND W/O PISCASSIC AND FUTURE

KEY FINDINGS

- Piscassic Bypass is significant--No bypass increases flood elevation
 0.3- 1.0 ft in Piscassic and reduces peak flows by 50% in MB
- LID benefit reduces runoff volume within watershed by 21% and peak flows by 12%
- Combined reduction from Piscassic, New Road, and LID exceeds 80%
- LID benefits could be accomplished in part with rezoning through redevelopment with a combination of new and redevelopment with BMPs targeted for a capture depth of 0.25-0.5 inches
- Approximately 50% covered by the municipality and 50% covered by private sector redevelopment.

APPLICATIONS

- New MS4 permits for NH and Final MA include a requirement for
 - BMP optimizing, and
 - Ranking of retrofits opportunities and target areas.
- Optimization at the watershed scale can significantly reduce costs for achieving load reduction targets for nitrogen, phosphorous, and other pollutants.
- "Small Systems" can be a tremendous way to increase the cost effectiveness

Thank you for your time

Robert Roseen <u>rroseen@waterstone-eng.com</u> Waterstone Engineering

SCENARIO RESULTS

Modeled Scenarios		Total Runoff (MG)	Total Inflow from Piscassic River (MG)	Peak Outflow into Lamprey River (cfs)		Total Outflow into Lamprey River (MG)	
				CFS	% Reduction	MG	% Reductio n
2015 Land Use; 8.75 inch 24-hour storm	307.51 cfs inflow from Piscassic River	66.15	199	898.93	0	225	-
	No inflow from Piscassic River	66.15	0	446.8	50.3%	62.53	72.2%
	Disconnect Newroad Drainage; 307.51 cfs inflow from Piscassic River	66.15	199	775.11	13.8%	207.2	7.9%
	Disconnect Newroad Drainage; No inflow from Piscassic River	66.15	0	276.33	69.3%	42.59	81.1%
2050 LID Buildout; 8.75 inch 24-hour storm	307.51 cfs inflow from Piscassic River LID	52.46	199	791.97	11.9%	214.12	4.8%
	No Inflow from Piscassic River LID	52.46	0	369.31	58.9%	50.25	77.7%
2050 Buildout; 10.06 inch 24-hour storm	612.35 cfs inflow from Piscassic River	84.38	396	1171.39	-30.3%	366.36	-62.8%
	No Inflow from Piscassic River	84.38	0	544.61	39.4%	79.44	64.7%
2050 LID Buildout; 10.06 inch 24-hour storm	612.35 cfs inflow from Piscassic River LID	71.57	396	1064.43	-18.4%	355.48	-58.0%
	No Inflow from Piscassic River LID	71.57	0	467.12	48.0%	67.16	70.2%

*CRHC Recommendation for +15% of existing

Capital Cost per Acre-Foot of Runoff Reduction

(cost range takes into account varying BMP capture depths, infiltration rates, and land uses)

LAND USE SCALE OPTIMIZATION

This process enables the identification of the **maximum extent practicable (MEP)**, or the point at which cost effectiveness is greatest and feasibility begins to decline.

To achieve **10,000 lbs** of reduction by treating residential land, use a mix of:

- Drywell/Infiltration trenches, 0.5" capture depth, treating runoff from driveways/sidewalks
- Drywells, 0.5" capture depth, treating roof runoff
- Bioretention (rain gardens), 0.25" capture depth, treating runoff from pervious C soils
- Bioretention (rain gardens), 0.25" capture depth, treating runoff from pervious D soils

WATERSHED OPTIMIZATION

CURRENT CURVE NUMBER

CHANGES IN CURVE NUMBER BY 2050

CHANGES IN CURVE NUMBER BY 2050 W/ LID

CHANGES IN CURVE NUMBER BY 2050

		Weighted Curve Number					
Subcatchment	Area (acres)	2005 (Current Conditions)	2050 Conventional Buildout	2050 Efficient LID Buildout			
10AS-L	50	65	69	57			
10AS-M	62	55	57	50			
10AS-U	62	62	62	54			
10S	18	74	76	66			
115	80	73	73	63			
12S	41	69	71	61			
1S	7	68	71	60			
2 S	50	62	63	60			
3 S	27	62	67	54			
4S	20	68	76	64			
5S	3	68	68	62			
6S	44	68	77	62			
7 S	11	71	73	61			
8 S	8	82	82	72			
9 S	5	90	90	75			
Total MB Watershed	486	66	69	59			

CURRENT LAND USE

CHANGES IN LAND USE BY 2050

41

CHANGES IN LAND USE BY 2050

	Acreage						
Land Use Type	2005 (Current Conditions)	2050 Buildout Scenario					
Redeveloped Residential	N/A	228.53					
New Residential	228.53	106.92					
Mixed Developed Uses	3.91	3.91					
Commercial, Services, and Institutional	22.7	35.39					
Industrial and Commercial Complexes	1.33	7.66					
Outdoor and Other Urban and Built-Up Land	12.4	12.4					
Transportation, Communications, and Utilities	24.12	24.12					
Agriculture	3.72	3.72					
Transitional	4.47	0.71					
Forest	155.13	50.03					
Barren	12.59	1.11					
Vacant	1.08	0.26					
Wetlands	15.9	11.12					
Moonlight Brook Watershed	485.88	485.88					
1. All of 2005 commercial and industrial land use is redeveloped for 2050							

CURRENT FLOOD CONDITIONS W/ PISCASSIC

CURRENT FLOOD CONDITIONS W/O PISCASSIC +371CFS

CHANGES IN FLOODING BY 2050 W/ O PISCASSIC

2050 W/ PISCASSIC + 612 CFS

CURRENT FLOOD CONDITIONS W/ PISCASSIC

CURRENT FLOOD CONDITIONS W/O PISCASSIC +371CFS

CHANGES IN FLOODING BY 2050 W/ O PISCASSIC

2050 W/ PISCASSIC + 612 CFS

BMP OPTIMIZATION--WQ

High-efficiency Bioretention - Commercial Impervious

BMP Sizing Example:

- •1 system treating a 1" water quality volume for 1 acre will remove approximately 12.7 lbs N/acre/year.
- •4 smaller systems across 4 acres designed to treat 0.25" WQV/acre/yr will each remove 10 lbs N/acre/year for a total of 40 lbs N per year.
- •An additional 27 lbs of nitrogen per year at nearly equivalent costs, or approximately 315% increase.

RECOMMENDED BMPS

Total Present Value of NPS Management (including O&M): \$7.5 M Total Volume Reduction from NPS Management: 13.7 Million Gallons Total Acres Treated: 417

Land Cover	BMP Type	BMP Size	Unit Runoff Reduction (MG / acre)	Recommended Acreage	Construction C (\$/acre)	Cost U	nit Cost (\$/MG)	Total Potential Runoff Reduction (MG)	Cost by Land Use (\$\$)
ROAD I	RAINGARDEN	1.5	0.029	189.31	\$ 18,000) \$	621,000	5.49	\$ 3,408,000
ROAD I	RAINGARDEN	1.5	0.03	44.86	\$ 18,000) \$	600,000	1.35	\$ 808,000
RESIDENTIAL R	RAINGARDEN	1.5	0.0325	41.73	\$ 18,000) \$	554,000	1.36	\$ 752,000
RESIDENTIAL I	RAINGARDEN	0.5	0.009	29.63	\$ 7,000) \$	778,000	0.27	\$ 208,000
RESIDENTIAL R	WET POND	1.5	0.063	18.85	\$ 22,400) \$	356,000	1.19	\$ 423,000
RESIDENTIAL C	RAINGARDEN	0.75	0.02275	16.95	\$ 10,000) \$	440,000	0.39	\$ 170,000
RESIDENTIAL D	RAINGARDEN	1.5	0.0325	12.02	\$ 18,000) \$	554,000	0.39	\$ 217,000
RESIDENTIAL B	GRAVEL WETLAND	1.5	0.049	9.04	\$ 35,300) \$	721,000	0.44	\$ 319,000
RESIDENTIAL A	WET POND	1.5	0.063	7.07	\$ 22,400) \$	356,000	0.45	\$ 159,000
OUTDOOR I	RAINGARDEN	1.5	0.03	6.23	\$ 18,000) \$	600,000	0.19	\$ 113,000
				417				13.7	\$ 7,428,000

*Showing only areas totaling greater than 5 acres

BIORETENTION AT HIGH SCHOOL

BIORETENTION AT HIGH SCHOOL

