GZA GeoEnvironmental, Inc. Natural Hazard Risk Management, Resilience and Climate Adaptation

NHDOT North Hampton – Rye 42312

NH Rt 1A Coastal Revetment Resilience/Conceptual Design 2022 Climate Summit – NH Coastal Adaptation Workgroup September 29, 2022

Known for Excellence. Built on Trust.

Project Overview – History

January - March 2018

November 2018

May 2019

June 2021

A series of nor'easters battered the coastal seawall and caused structural damage

FEMA issues findings from site inspections

DOT hires GZA to develop revetment restoration alternatives

GZA issues Conceptual Design Report

Project Overview – Project is Ongoing

Scope:

- ✓ Site reconnaissance and existing conditions documented
 - o Nine stone revetment sections

\checkmark Coastal flood hazards characterization

- o Metocean Data Analysis
- o Wave Modeling

\checkmark Risk Based vulnerability assessment

- o Current conditions
- o 1978 conditions

✓ Conceptual Improvements Report

DOT coordinating with FEMA and evaluating responses to RFP for design

GZA GeoEnvironmental, Inc. Natural Hazard Risk Management, Resilience and Climate Adaptation Services

Section 1 – Post Storm Observations – March 5, 2018

GZ

Overwash Road Debris (not shown) Overwash Backside Scour

Cumulative Road Closures – January & March 2018

REVETMENT SECTION	CUMULATIVE DURATION OF FULL ROADWAY CLOSURE (HOURS:MINUTES)*	NO. OF FULL ROADWAY CLOSURES	TYPICAL MORE SIGNIFICANT RECURRING DAMAGE		
1	3:52	1	\checkmark		
2	3:52	1	\checkmark		
3	3:52	1			
4	23:52	4			
5	23:52	4			
6	22:32	5	✓		
7	15:55	4			
10	37:36	8	\checkmark		
13	37:36	8	✓		

Section 10 March 3, 2018

* January and March 2018

 Table 5. Top Ten Highest Water Levels¹ at NOAA Boston and Portland Gage.

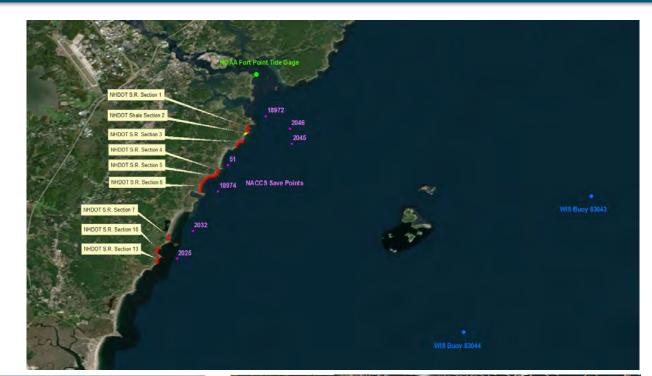
	Boston, MA			Portland, ME					
Time	Water Level ² (ft, NAVD88)	Storm Type	Time	Water Level ² (ft, NAVD88)	Storm Type				
1/4/2018	9.66	Nor'Easter	2/7/1978	8.87	Nor'Easter				
2/7/1978	9.59	Nor'Easter	1/9/1978	8.68	Nor'Easter				
3/2/2018	9.13	Nor'Easter	1/4/2018	8.26	Nor'Easter				
1/2/1987	8.69	Nor'Easter	3/16/1976	8.01	Nor'Easter				
10/30/1991	8.63	Nor'Easter	12/4/1990	8.00	Nor'Easter				
1/25/1979	8.53	Nor'Easter	11/20/1945	7.99	Nor'Easter				
12/12/1992	8.52	Nor'Easter	11/30/1944	7.99	Nor'Easter				
12/29/1959	8.47	Nor'Easter	3/2/2018	7.91	Nor'Easter				
2/19/1972	8.39	Nor'Easter	4/16/2007	7.91	Nor'Easter				
1/3/2014	8.33	Nor'Easter	1/2/1987	7.88	Nor'Easter				

Note:

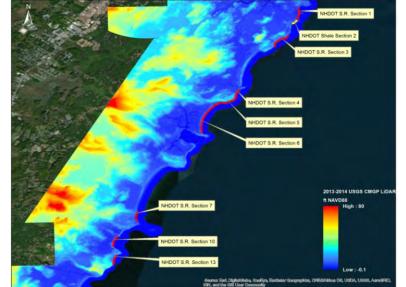
1. Source data provided by NOAA, available at http://tidesandcurrents.noaa.gov/est/Top10_form_ft.pdf.

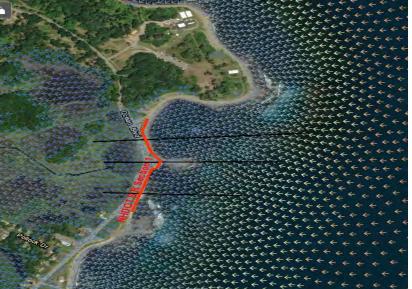
2. Water levels were converted to NAVD88 from source data.

Section 10



Metocean Analysis and Numerical Modeling


- Metocean Data Analysis
- Digital Elevation Model

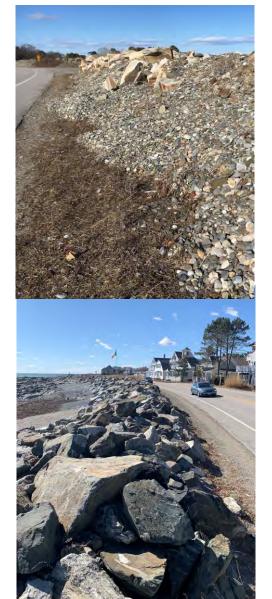

GZ

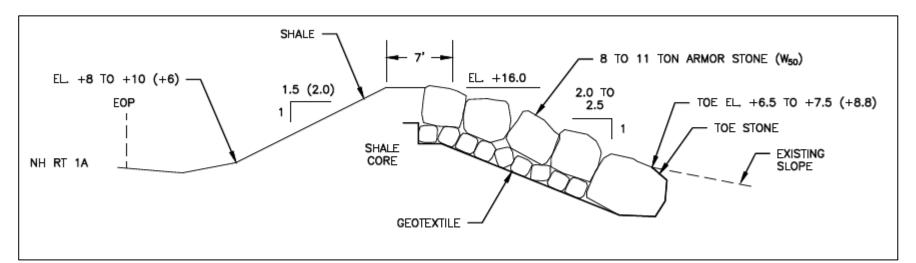
• Numerical Wave Modeling

Conceptual Design

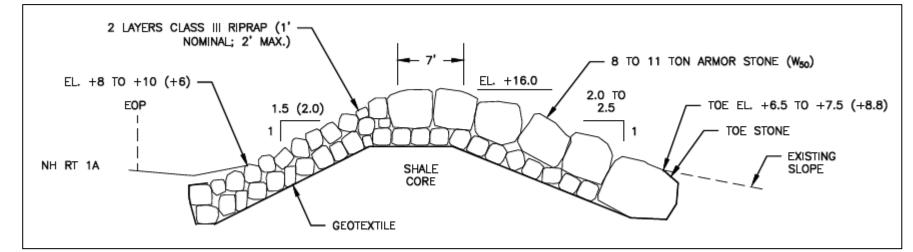
- Revetement Evaluation (stability, stone size)
- Roadway Vulnerability Evaluation (overtopping, flow rates)

	Stillwat	ter Elevatio	on (feet NA	VD88*)	Total Water		Base Flood		
	10-	2-	1-	0.2-	Elevation		Elevation*	NHDOT	
Transect	Percent	Percent	Percent	Percent	1-Percent	Zone	(feet	Section	
	Annual	Annual	Annual	Annual	Annual		NAVD88**)	Section	
	Chance	Chance	Chance	Chance	Chance ¹				
						VE	212		
30	7.24	7.98	8.36	9.43	11.67	AE	21 ²		
30	7.24	7.50	0.50	5.45	11.07	AO	3		
						AE	8-10	6	
						VE	20 ²		
21	7.04	7.00	0.00	0.40	11.00	AE	20 ²		
31	7.24	7.98	8.36	9.43	11.66	AO	3]	
						AE	8-10		
						VE	16 ² -18		
43	7.24	7.98	8.36	9.43	11.47	AE	16 ²	1	
						AO	3	7	
44	7.24	7.98	8.36	9.43	11.53	VE	18 ²		
44	7.24	/.50	0.50	5.45	11.55	AE	18 ²		
			8.36	9.43	11.00	VE	20 ²	-	
46	7.24	7.00				AE	20 ²		
46	7.24	7.98	8.30	9.43	11.66	AO	3		
						AE	8-9	1 10	
						VE	24 ²	10	
47	7.24	7.98	8.36	9.43	11.21	AE	24 ²]	
47	7.24	7.98	8.30	9.43	11.21	AO	3	1	
						AE	8-9		
48	7.24	7.98	8.36	9.43	11.82	VE	22 ²		
40	7.24	7.50	0.50	9.45	11.62	AE	22 ²	13	
49	7.24	7.98	8.36	9.43	11.7	VE	18 ²	12	
	7.24	1.70	0.50	5.45	11./	AE	18 ²		




10-yr	Section								
		2	3	4	5	6	7	10	13
Back Water Flood	✓	✓		 ✓ 		 ✓ 			
NH Rt 1A Flood	✓	✓							
O∨ertopping	✓	✓	✓	✓	✓	✓			✓
% Length Unsafe Dri∨ing - High Speed									
% Length Unsafe Dri∨ing - Any Speed	19%	82%	86%	59%	80%	11%	-	-	23%
50-yr									
Back Water Flood	✓	✓		 ✓ 		 ✓ 			
NH Rt 1A Flood	✓	✓							
O∨ertopping	✓	✓	✓	✓	✓	✓	✓	✓	✓
% Length Unsafe Dri∨ing - High Speed								18%	
% Length Unsafe Dri∨ing - Any Speed	48%	100%	86%	100%	80%	47%	66%		44%
100-yr			•		•				
Back Water Flood	✓	✓		 ✓ 		 ✓ 			
NH Rt 1A Flood	✓	✓							
O∨ertopping	✓	✓	✓	✓	✓	✓	✓	✓	✓
% Length Unsafe Dri∨ing - High Speed									
% Length Unsafe Dri∨ing - Any Speed	84%	100%	100%	100%	80%	69%	100%	45%	72%
NHDOT Repetiti∨e Damage	✓	~				 ✓ 		~	✓
Jan & March 2018 Full Closure Time	3:52	3:52	3:52	23:52	23:52	22:32	15:55	37:36	37:36
Jan & March 2018 Full Closure Periods	1	1	1	4	4	5	4	8	8

Coastal Flood Water Levels – FEMA Coastal Transects


Existing Conditions Vulnerability Assessment Summary

Conceptual Design – Revetment Reconstruction

Full Reconstruction with Exposed Shale on the Crest and Backslope (Similar to 1978 Design)

Full Reconstruction with Stone Crest and Backslope

Take-Aways and Future Work

- Wave Overtopping Can Cause Stability Issues
 - Field measurements of stone/ sediment size is important
- Fine model resolution needed with a complex nearshore
 - Carefully choosing the design wave
- Be aware of permitting/ federal-state-local regulations
 - Minimum crest elevation: greater of existing and 1978
- Other Considerations (ex. water use, viewscape)
- Reconstruct with an engineered revetment
 - Core stone, Geotextile, Filter Stone, Armor Stone
 - FEMA cost recovery
- Two Concepts for Consideration
 - Include armor stone on the ocean side, crest and backslope
 - Maintain exposed shale on the crest and backslope

GZA GeoEnvironmental, Inc. Natural Hazard Risk Management, Resilience and Climate Adaptation Services

Questions?

