

FEMA's Coastal Erosion Hazard Areas – Future Coastal Erosion and Sea Level Rise

Wednesday, September 28th, 2022 Kerry Bogdan (FEMA Region I) Brian Caufield (Compass)

Purpose and Objectives of Study

- 1994 Congress directed FEMA to prepare and submit an evaluation of economic impacts and feasibility of mapping Erosion Hazard Areas (EHA) as part of the NFIP.
- 1994-1999 Pilot studies conducted in coastal communities to estimate long-term shoreline change.
- 2000 Heinz Center Study evaluates feasibility of FEMA mapping coastal erosion hazards.
- 2016 TMAC recommends FEMA map coastal erosion hazards and future conditions due to SLR.

Study Approach

Current Study in New England

- Currently focused on New England Shoreline – Rhode Island, Massachusetts, New Hampshire, Maine, Connecticut (1450 miles)
- Many areas have historically eroded over the long-term
- Combination of bluff-backed and sandy shorelines.
- Mix of protected and exposed areas.

Increasing Resilience Together

2

Purpose and Objectives of Study

- There have been several local and regional studies of SLR and coastal erosion.
- Most studies focus on 1) flooding and inundation to future SLR or 2) observed (historical) rates of coastal erosion.
- This study focuses on how SLR will accelerate observed of erosion and what future hazard zones might look like over multiple time frames.

FEMA

≥USGS

Study Approach

Current FEMA Study in New England

- FEMA's goal is to develop Non-Regulatory, coastal erosion hazard area maps that can help communities plan for future SLR.
- Map several SLR scenarios to be useful to a variety of community members.
- Maps that forecast future erosion over multiple timeframes (2030, 2050, 2100).
- The maps show areas "*at risk*" due to future erosion. They do not predict exactly where the shoreline will be in the future.

Purpose and Objectives of Study

- Developed data that show future coastal erosion hazard areas under multiple SLR scenarios for the years 2030, 2050, and 2100.
- > Data can be used to identify areas most at risk and help communities plan for SLR.

Purpose and Objectives of Study

 Rockingham has a mix of pocket beaches bounded by hard, rocky headlands.

Hampton beach has historically low long-term retreat rates.

Coastal retreat is expected to increase with future SLR.

Study Approach

I-D Transect-Based Analysis

1 N

Study Area

Rockingham County

- Spaced every ~50 meters
- Capture both sandy and bluff-backed shorelines
- Extracted cross-shore profiles from airborne topographic LiDAR data
- Nearly 630 transects in Rockingham County.

Study Approach

- Used historical shorelines from 1800s-2000s to calculate historical rates of shoreline change
- Calculate how much future SLR would accelerate shoreline change
- Projected future, accelerated rates of shoreline change to 2030, 2050, and 2100 to estimate coastal erosion hazard areas.

How data has been used elsewhere

2021 "State of the Coast" report has incorporated results from this study.

How data has been used elsewhere

		Gosnold	Aquinnah	Chilmark	West Tisbur	Tisbury	Oak Bluffs	Edgartown	Nantucket
Max Short Term Erosion Rates (Feet/Year) 1970-2014 [CIT. 5]	BEACH	No Data	4.6	6.6	7.8	3.1	5.5	54.5	16.6
Max Long Term Erosion Rates (Feet/Year) 1800s-2014 [CIT. 5]		No Data	4.9	6.2	6.9	3.1	4.4	27.0	11.5
Acreage Lost to Erosion 1887–2014 [CIT. 5]		No Data	40.3	520.2	238.6	21.8	37.1	579.0	1857.8
Acreage Projected to be Lost to Erosion by 2050 (FEMA) [CIT. 10]		No Data	76.7	332.0	135.1	74.0	68.3	585.0	1700.8
Acres Total Marsh Loss in 2050 [CIT. 2]	MARSH	3.6	-3.1	0.3	-8.1	21.8	28.8	227.1	50.0
Acreage of New Marsh Growth or Migration through 2050 [CIT. 2]		0.3	37.5	16.8	10.1	5.4	29.1	89.3	438.0
Structures in Area Flooded from Daily Tidal Flooding in 2050 [CIT. 3]	STRUCTURES FLOODED	10	0	34	1	92	87	76	628
Structures in Areas Flooded from 10-Year Storm in 2050 [CIT. 3]		81	39	164	93	437	554	757	1436
Miles of Road Flooded from Daily Tidal Flooding in 2050 [CIT. 1]	ROADS FLOODED	1.1	0.4	0.9	0.8	2.1	1.4	10.9	25.1
Miles of Road Flooded from 10-Year Storm in 2050 [CIT. 3]		8.7	4.1	11.9	10.5	8.1	11.0	49.4	68.6
Structures in Areas Impacted by Erosion by 2050 (FEMA) [CIT. 10]	EROSION OF STRUCTURES AND ROADS	No Data	3	27	15	108	89	44	500
Miles of Roads Impacted by Erosion in 2050 (FEMA) [CIT. 10]		No Data	0.6	3.4	1.6	1.3	2.8	10.5	24.3

>

> 2021 "State of the Coast" Report.

Summary

- Developed coastal erosion hazard area maps that cover the FEMA Region I shoreline.
- Incorporate future SLR (*local rates for Rockingham County*).
- Maps forecast future erosion over multiple timeframes (2030, 2050, 2100).
- NOAA 2017 Low-High SLR scenarios (4 total) for a variety of planning purposes.
- Include both sandy shorelines and bluffs.
- Incorporate observed erosion trends.
- Show areas "at risk" to future erosion.

Data Viewer

Landing Page

Select County of Interest

Select Risk Level to View

Pirates Cove Beach, Rye

Pirates Cove Beach, Rye - Intermediate

Pirates Cove Beach, Rye - Low

Pirates Cove Beach, Rye - High

NH Coastal Viewer

Invitation to Town Hall!

- Evening Meeting open to all
- Registration is required
 - Link is in the chat, copy and share
- October 19th
- ▶ 6:30 8:00 p.m.

