

77 SPUR ROAD – CONCEPTUAL DESIGN

BY: Annique Fleurat, Derek Newhall, Jill Griffiths, Tom Brightman, Conor Madison, Magdalena Ayed

APRIL 8, 2022

Existing Conditions

South Section: Moderate/Stable

Middle Section: Steep/Eroding

North Section: Retaining Walls/Armoring

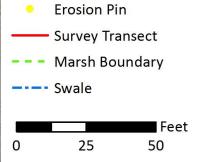
Impairments & Stressors

- Impairments
 - High marsh restricted to narrow band that is badly eroded along seaward edge in many areas
 - Relatively healthy marsh despite erosion
- Stressors
 - Standard tidal action
 - Increasing inundation/sea level rise
 - Winter storms
 - Ice scouring/rafting

Site Constraints

Project Goals

- Ecological Goals
 - Protect existing salt marsh from further erosion
 - Restore salt marsh and shoreline functions that have already been lost to erosion
 - Allow for some inland migration of salt marsh as sea level rises
- Landowner Goals
 - Limit further shoreline erosion
 - Protect lawn and property from flooding and erosion hazards
 - Maintain some lawn for pets, open space, and field of view to river
 - Provide for seasonal storage of several large docks on land accessible by barge-mounted crane



Site Assessment

Legend

Ν

EP #2 EP #3 EP #5

EP #4

EP #:

Historic Bulkhead

TRADECORDECT CONTRACTOR OF CON

Extent of High Marsh Vegetation

T2

High/Low Marsh Boundary

Eroded Edge/Lower Low Marsh Boundary

Tidal Data Analysis

Sea Level Rise Projections

	Elevation (f			
Datum	Existing (Fall 2021)	2050 SLR Scenario (+1.3')	Zone	
HTL	5.77	7.07	Tidal Buffer	
МННЖ	3.77	5.07	High Marsh	
мнพ	3.42	4.72		
MTL	0.13	1.43	Low Marsh	
MLW	-3.17	-1.87	Subtidal	
MLLW	-3.41	-2.11		

NH Guidance for Estimating Coastal Flood Risk Projections

STEP 1. DEFINE PROJECT GOAL, TYPE, LOCATION, AND TIMEFRAME(S)

Step 1.1 | Define the project goal and project type Step 1.2 | Define and inventory the project area Step 1.3 | Define the timeframe(s) for the project

= ~30 yrs (2050)

STEP 2. DETERMINE TOLERANCE FOR FLOOD RISK

Step 2.1 | Identify project characteristics that influence tolerance for flood risk Step 2.2 | Determine tolerance for flood risk based on project characteristics = High Tolerance

STEP 3. SELECT AND ASSESS RELATIVE SEA-LEVEL RISE (RSLR)

Step 3.1 Select RSLR estimate(s) for the project	
Step 3.2 Assess RSLR impacts to the project	

= 1.3 feet

STEP 4. IDENTIFY AND ASSESS RSLR-ADJUSTED COASTAL STORMS

Step 4.1 | Identify RSLR-adjusted Design Flood Elevation (DFE) Step 4.2 | Assess RSLR-adjusted coastal storm impacts to the project

STEP 5. IDENTIFY AND ASSESS RSLR-INDUCED GROUNDWATER RISE

Step 5.1 | Identify RSLR-induced groundwater rise for the project Step 5.2 | Estimate depth to present-day and future groundwater Step 5.3 | Assess RSLR-induced groundwater rise impacts to the project

STEP 6. IDENTIFY AND ASSESS PROJECTED EXTREME PRECIPITION

Step 6.1 | Account for projected increases in extreme precipitation Step 6.2 | Assess projected extreme precipitation impacts to the project

STEP 7. ASSESS CUMULATIVE RISK AND EVALUATE ADAPTATION OPTIONS

Step 7.1 | Assess cumulative coastal flood risk to the project

- Step 7.2 | Identify and evaluate adaptation options to mitigate coastal flood risk
- Step 7.3 | Select and implement preferred option(s) or revisit previous steps

Bank Erosion Projections

Pin Dist. from S		Protruding Distance (mm)		Erosion Rate		2050 Erosion	
No. Edge of Pier (ft)	9/24/2021	10/28/2021	3/19/2022	mm/day	mm/yr	Distance (ft)	
6	33	0	11	59	0.398	145	14
1	36	0	24	_	0.706	258	25
2	55	0	33	163	1.114	406	39
3	67	0	33	147	1.023	373	36
5	83	0	2	0	0.059	21	2
4	150	0	20	15	0.199	73	7
Average (all data)			0.583	213	20		
Average (excluding #1 & #5 outliers)			0.683	249	24		

No Action Alternative

Legend

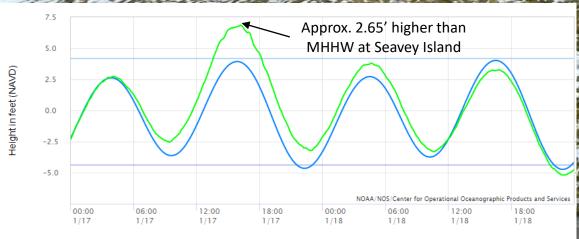
- Current Eroded Edge
- -- 2050 Eroded Edge
- Current MHW
- -- 2050 MHW
- Current HTL
- - 2050 HTL

0

20 40

-2050 (High Title Line (7:1 ft)

-Current High Tide Line (5.8 ft)


.

2050 Mean High Water (4.7 ft) 2050 Eroded Edge Current Mean High Water (3.4 ft)

Current Eroded Edge

and the second second

High Tide + Storm Surge

Predictions — Verified — Preliminary — (Observed - Predicted)

January 17, 2022

Concept Design

Future designs to to include outfall for stormwater Approx. limit of wetland marsh vegetation

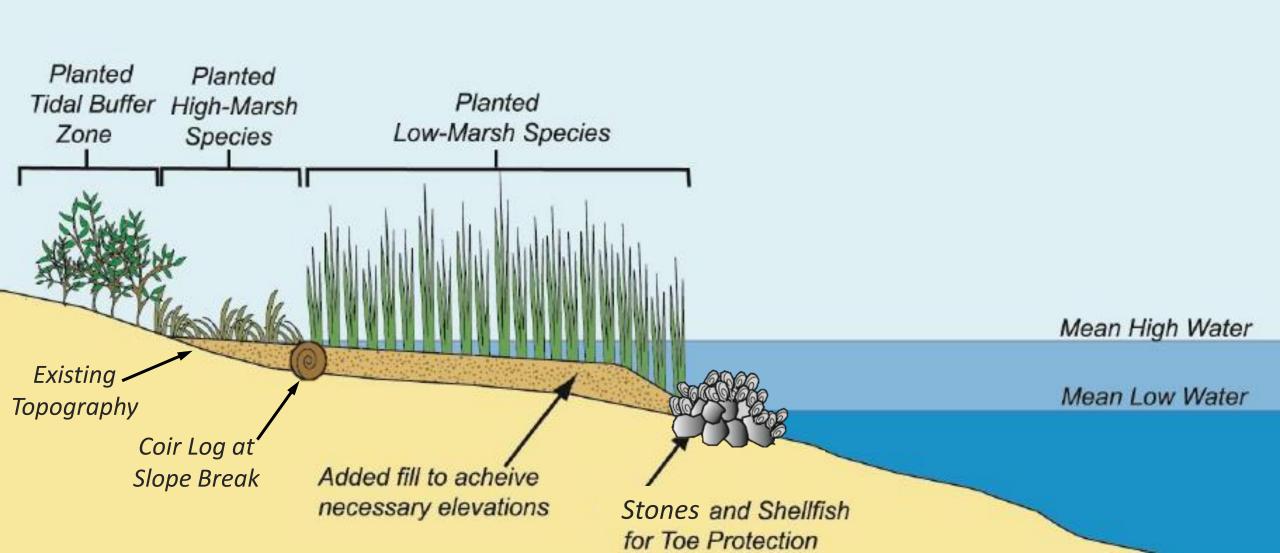
Approx. layout of Irrigation

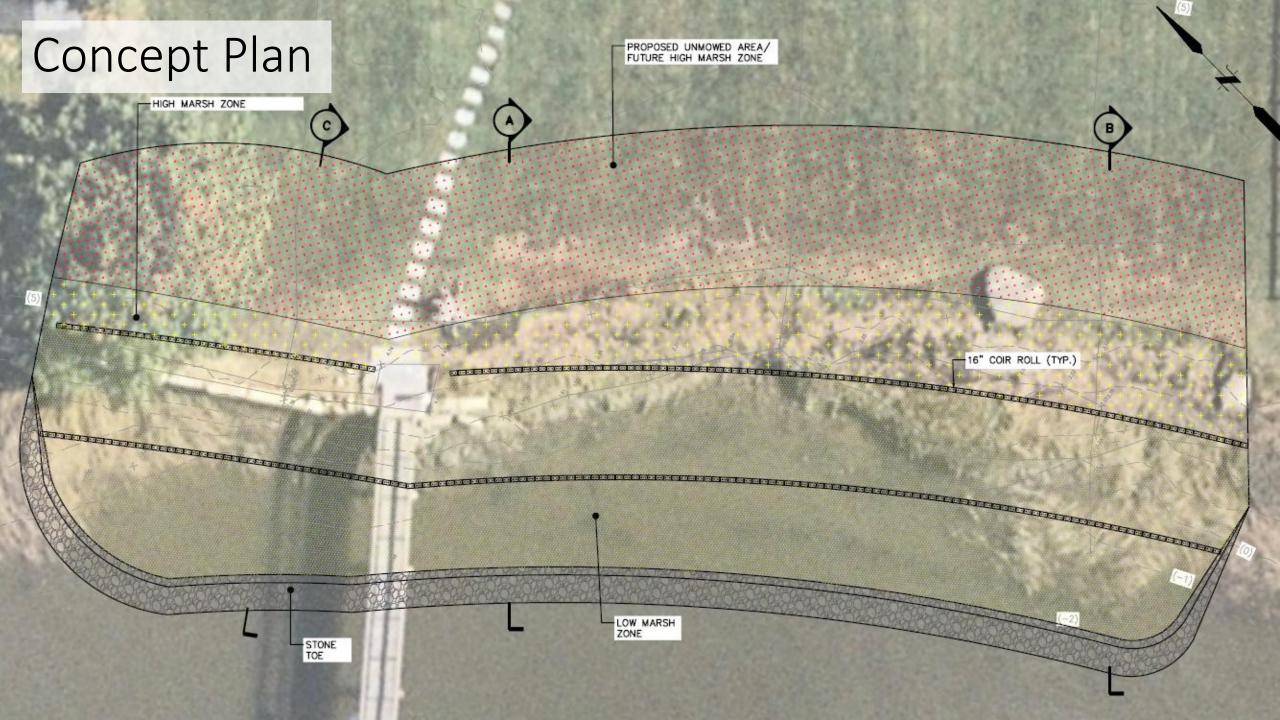
LUTRERES PREFERENCES TO CONTRACTORS

0

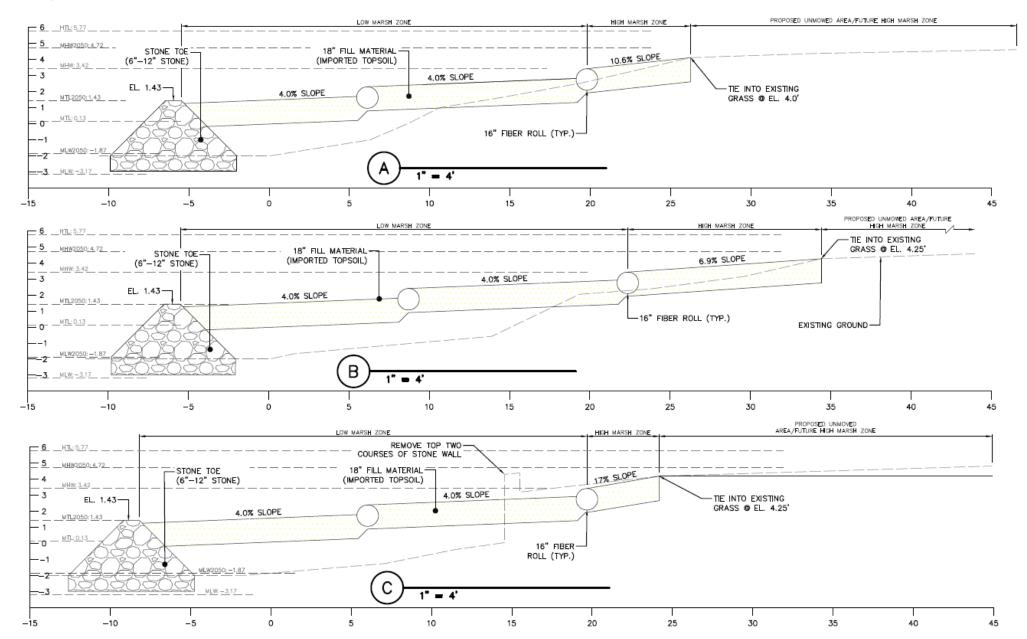
Proposed Living Shoreline - Stone Toe

Proposed Living Shoreline - Low Marsh


16" Coir Fiber Roll for stabilization

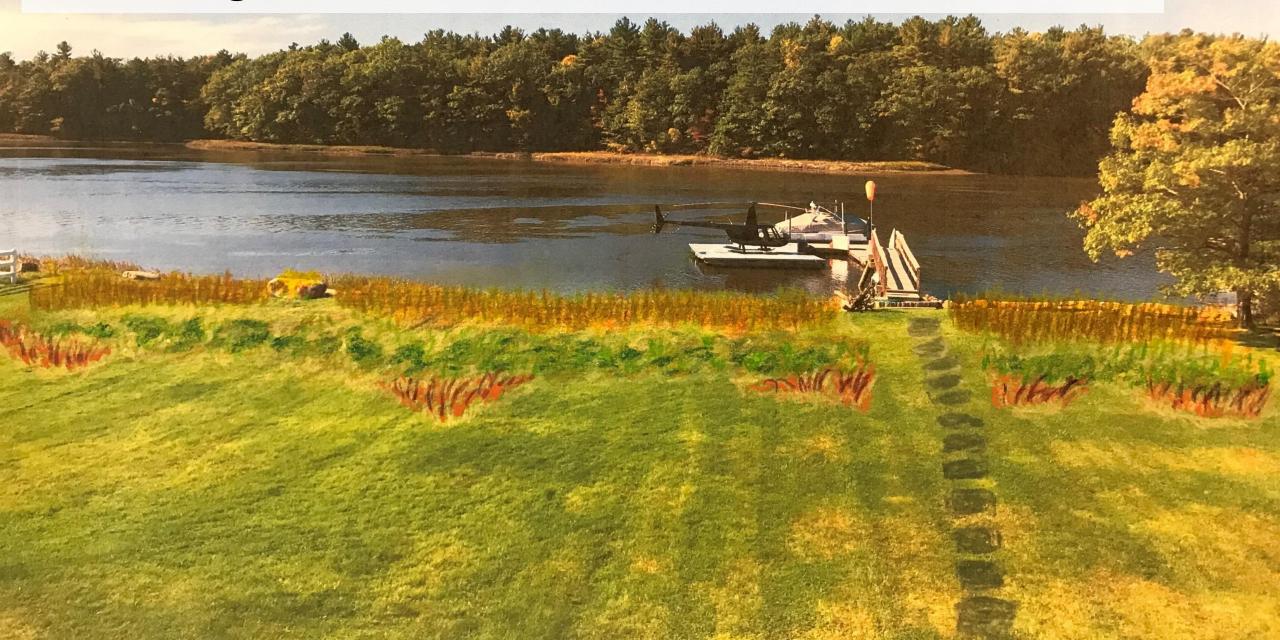

Proposed Living Shoreline -Future High Marsh

> April 2018 Shoreline


Proposed Living Shoreline -Future High Marsh / Unmowed Area

Concept Design – Typical Section

Concept Sections



Renderings – Existing Conditions

Renderings – Proposed Salt Marsh with Low & High Marsh Grasses Only

Landowner Selected Alternative

Renderings – Proposed Salt Marsh with Upland Grasses in Tidal Buffer

Renderings – Proposed Salt Marsh with Protective Boulders in Tidal Buffer

Permitting Requirements

<u>STATE</u>

- NHDES Minimum Impact Tidal Shoreline Stabilization Project (Env-Wt 609.10(b))
 - < 200 linear feet and extending < 50 feet seaward of Mean Low Water
 - Coastal functional assessment
 - Coastal vulnerability assessment
 - Close coordination with NHDES
- NHDES Shoreland Permit (Env-Wq 1412)
 - Shoreland Restoration eligible for restoration of a waterfront buffer
- NH Dept. of Historical Resources (DHR) Archeological Assessment
 - Phase IA Survey
 - Request for Project Review

LOCAL

- Dover Conditional Use Permit (CUP)
- Conservation Commission Approval
- Planning Board

Next Steps

- Preliminary Design
- Permitting
- Final Design
- Construction
- Post-Construction Monitoring
 - Initial/ongoing planting success
 - Shoreline erosion rate
 - Topo survey to assess settlement/erosion
 - Biological indicators

Questions?

Design Team

Annique Fleurat, PE Water Resources Engineer VHB AFleurat@VHB.com

Derek Newhall Water Resources Engineer Fuss & O'Neill, Inc. dnewhall@fando.com

Jill Griffiths, PE

Water Resources Engineer Gomez and Sullivan Engineers, DPC jgriffiths@gomezandsullivan.com

Design Team Coordinator

Lynn Vaccaro

Coastal Training Program Coordinator Great Bay National Estuarine Research Reserve Lynn.e.Vaccaro@wildlife.nh.gov

Tom Brightman Env. Steward/Ecologist, Principal Osprey Ecological Services, LLC tbrightman@me.com

Conor Madison Environmental Scientist GZA GeoEnvironmental, Inc. conor.madison@gza.com

Magdalena Ayed, MACC Certified

Coastal Stewardship Planner The Harborkeepers Magdalena@harborkeepers.org

