Research supported by NASA WR Applied Science (NNX15AC47G)

Design Snow Water Equivalent and Snowmelt

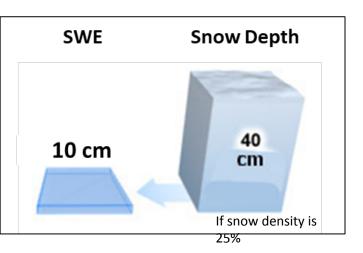
Jennifer Jacobs¹, Eunsang Cho^{2,3}, Rachel McCrary⁴

 ¹ University of New Hampshire, Durham, NH
² Hydrological Sciences Laboratory (Code 617), NASA Goddard Space Flight Center, Greenbelt, MD
³ Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, MD
⁴ National Center for Atmospheric Research (NCAR), CO

NH Climate Summit May 26, 2020 (Thursday)

Background Snow-driven Extreme Events in U.S. and Canada

- Snow and snowmelt driven extreme events can have large societal and economic consequences. Extreme snow can *damage infrastructure* (e.g. dams) and buildings.
- Snow meltwater with rain-on-snow event is a dominant driver of **severe spring floods** in the north-central and -eastern U.S. and southern Canada.
- The current and future snowpack and snowmelt extreme design maps are very limited *due to the lack of reliable long-term snow data*.

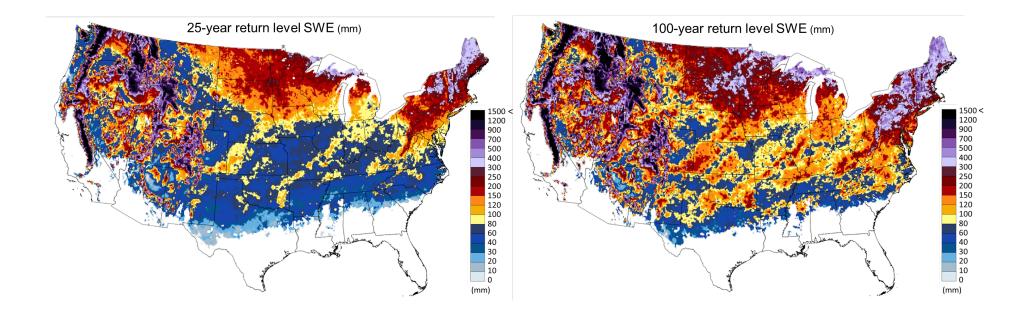


Background Importance of snow water equivalent (SWE)

Exceeded design values of snow loads on building roof

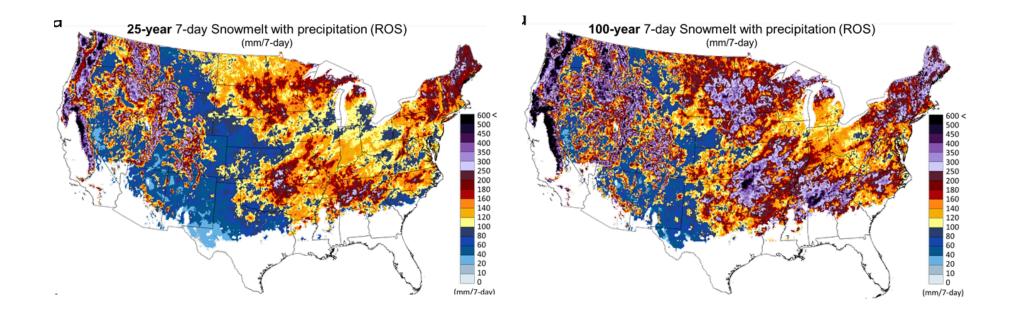
Accurate, spatially distributed SWE data are important to develop design extreme SWE and snowmelt maps

Motivation & Research Questions

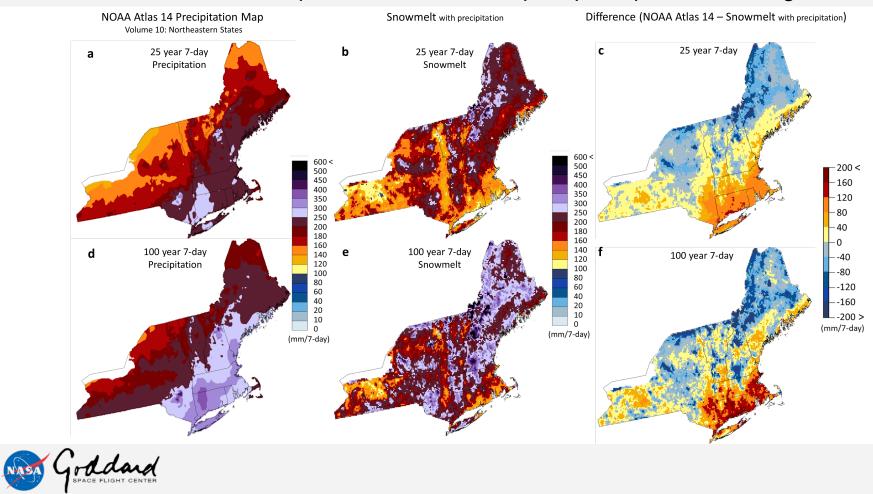

The "current" U.S. government standard design precipitation maps (e.g. NOAA Atlas 14) are based on liquid precipitation data with **very** *limited guidance on snowmelt-driven floods.*

Q1. How different are design extreme SWE and snowmelt using the current available long-term SWE datasets from the NOAA Atlas 14 design standard map?

Q2. Which regions are vulnerable to extreme snowmelt events if infrastructures were designed based on the Atlas 14 standard values?



Result 1 25- and 100-year Return Level SWE



Result 1 25- and 100-year Snowmelt with precipitation

Result 2 NOAA Atlas 14 maps vs. snowmelt with precip. Maps for New England

Conclusion 1

Q1. How different are design extreme SWE and snowmelt using the current available long-term SWE datasets from the NOAA Atlas 14 design standard map?

✓ The 7-day extreme snowmelt values exceed the Atlas 14 standard design values in 23% of the total extent.

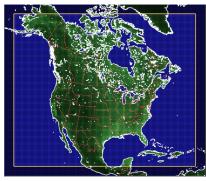
Q2. Which regions are vulnerable to extreme snowmelt events if infrastructures were designed based on the Atlas 14 standard values?

In the northeastern U.S. near the Canadian border, the north central U.S. where just 10 cm of SWE can cause spring flooding, and the western mountainous U.S., design snowmelt substantially exceeds the Atlas 14 design values.

Additional Question

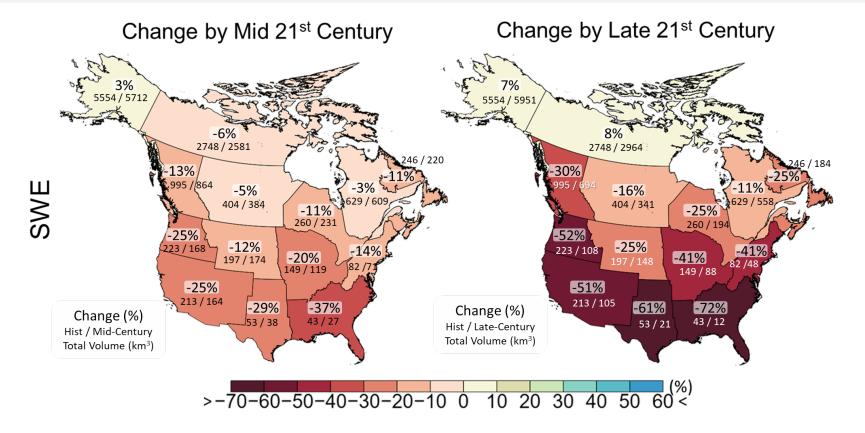
However... Hydrologists and water resources engineers are still challenged to plan and design infrastructure for **the "future" SWE & snowmelt extremes in a changing climate**.

Q3. How much will snow-related extreme values (1. Snowpack, 2. Snowmelt, and 3. Runoff Potential [snowmelt + precipitation]) be changed in the mid-century and late-century from the current condition?


NA-CORDEX SWE data

- North America COordinated Regional Downscaling Experiment (NA-CORDEX) regional climate model (RCM) ensemble.
- Multiple RCMs are used to dynamically downscale multiple CMIP5 global climate models (GCMs).
- 25km resolution SWE simulations (3 RCMs, 7 GCMs, **9 Simulations**)
- Study period
- Historical (1976 2005)
- Mid-century (2040 2069)*
- Late-century (2070 2099)*

*Future runs follows RCP8.5 emissions scenario



RCMs	CRCM5 (UQAM)	RegCM4	WRF	CanRCM4
HadGEM2-ES		Х	Х	
CanESM2	Х			x
MPI-ESM-LR	Х	Х	х	
MPI-ESM-MR	Х			
GFDL-ESM2M		Х	х	
GEMatm-Can	Х			
GEMatm-MPI RegCM4 models ar	e exo X uded	due to unreali	stic wet estim	ates & numer
	HadGEM2-ES CanESM2 MPI-ESM-LR MPI-ESM-MR GFDL-ESM2M GEMatm-Can	RCIVIS(UQAM)HadGEM2-ESCanESM2XMPI-ESM-LRXMPI-ESM-MRXGFDL-ESM2MGEMatm-CanX	RCIVIS(UQAM)RegCM4HadGEM2-ESXCanESM2XMPI-ESM-LRXXXMPI-ESM-MRXGFDL-ESM2MXGEMatm-CanX	RCIVIS(UQAM)RegCM4WRFHadGEM2-ESXXCanESM2XXMPI-ESM-LRXXMPI-ESM-MRXXGFDL-ESM2MXX

Result 3 – Future Changes in SWE by regional boundaries

*US National Climate Report & Canada's Changing Climate Report

Result 2 – Future Changes in Snowmelt by regional boundaries Extreme Events (25-year Return Level) Change by Late 21st Century Change by Mid 21st Century 8 63 3% -2% 354 / 375 35% **53%** 620 / 946 7-d Snowmelt 620 / 837 -4% -14% **-14%** 239 / 20,4 199 / 192 199/1/11 -6% 239 / 224 287 / 28 287 / 29 -8% 138 / 127 -20% 138/111 -19% -41% -8% 107 / 98 **-17%** 107 / 89 79/64 79 / 47 **-17%** 93 / 78 -35% 93 / 61 -18% -43% 96 / 78 Change (%) 96 / 54 **-73%** 32 / 8.7 Change (%) -36% -24% -56% Hist / Late-Century Hist / Mid-Century 39/30 32 / 21 39/17 Total Volume (km³) Total Volume (km³) 10 20 30 40 50 60 < >-70-60-50-40-30-20-10 0

Result 2 – Future Changes in RP by regional boundaries Extreme Events (25-year Return Level) Change by Late 21st Century Change by Mid 21st Century A. 8-24 13% **19%** 354 / 470 7-d Runoff Potential 354 / 375 **41%** 25% 728/913 30/129 /130 6% 243 / 258 7% 243 / 259 -8% -2% 373 / / 288 / 266 288 / 283 -5% -2% 180 / 17 180 / 176 -6% -12% **-7%** 150 / 139 **-1%** 150/148 144 / 135 144 / 127 -10% -19% (-4% 194 /84 194 / 168 / 162 -21% -6% 210/197 210/167 -22% 28% -47% -45% Change (%) Change (%) 135 / 97 135 / 74 93 / 73 93 / 50 Hist / Late-Century Hist / Mid-Century Total Volume (km³) Total Volume (km³) >-70-60-50-40-30-20-10 0 10 20 30 40 50 60 <

Conclusion 2

Q3. How much will snow-related extreme values be changed in the mid-century and late-century across the north America?

- Extreme SWE values will decrease by up to 150 mm (mid-century) and 500 mm (late-century) respectively over the US, but increase in the Alaska and northern Canada
- 2. Similarly, **7-d snowmelt will decrease** by 50 and 100 mm over U.S. but **increase in the Alaska and northern Canada**.

Thank you for listening, Questions?

If you have additional questions or comments, feel free to email me!

Jennifer Jacobs, Ph.D. Jennifer.Jacobs@unh.edu Eunsang Cho, Ph.D. Twitter: @Jacobs_UNH and @Eunsang_UNH Web: https://echo-hydro.github.io

Acknowledgement

The authors are grateful to **Carrie Vuyovich** for providing valuable comments and all colleagues who contributed to the project. This research gratefully acknowledge support from **NASA Water Resources Application Program grant (NNX15AC47G)** and **NASA Terrestrial Hydrology (THP) Program (NNH16ZDA001N)**

Supplementary Information

Relevant References

Cho, E., J.M. Jacobs, C. Vuyovich (2020) The value of long-term (40 years) airborne gamma radiation SWE record for evaluating three observation-based gridded SWE datasets by seasonal snow and land cover classifications, *Water Resources Research, featured in AGU EOS Research Spotlight! Also awarded as 2020 AGU WRR Editor's Choice Award yesterday!*

	AGU100 ADVANCING EARTH AND SPACE SCIENCE	Eos. Science News by AGU	
Water Resou	Irces Research	NEWS * OPINIONS * SPECIAL TOPICS NEWS FROM AGU JOURNALS * TOPICS & DISCIPLINES * BLOGS	
RESEARCH ARTICLE 10.1029/2019WR025813 Special Section: Advances in remote sensing, measurement, and simulation of seasonal smow Key Points: • Long-term airborne gamma radiation observations provide reliable SWE observations even over forest regions • University of Arizona (UA) SWE has the strongest agreement with gamma SWE conservates (seasonal	The Value of Long-Term (40 years) Airborne Gamma Radiation SWE Record for Evaluating Three Observation-Based Gridded SWE Data Sets by Seasonal Snow and Land	HYDROLOCY, CRYOSFHERE & BARTH SURFACE BResearch Spotlight	
	Cover Classifications Eunsang Cho ^{1,2} , Jennifer M. Jacobs ^{1,2} , and Carrie M. Vuyovich ³	Snowpack Data Sets Put to the Test	
	¹ Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, USA, ² Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA, ³ Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA	A new study compares the accuracy of three observation-based methods of calculating snow water equivalent, a key component in water management.	

Relevant References

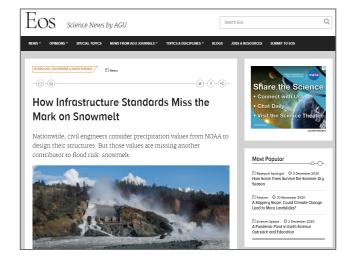
Cho, E., & Jacobs, J. M. (2020). Extreme Value Snow Water Equivalent and Snowmelt for Infrastructure Design over the Contiguous United States. *Water Resources Research. featured in AGU EOS Science News!*

Cho, E., Rachel R. McCrary, Jennifer M. Jacobs Future Snow Water Equivalent and Snowmelt Extremes from Regional Climate Model Ensembles *Earth's Future (in prep.)*

Water Resources Research

RESEARCH ARTICLE

10.1029/2020WR028126


Key Points:

- The 25- and 100-year design extreme SWE and snowmelt maps were developed by GEV probability distribution using the UA and SNODAS SWE
- The 7-day snowmelt exceeds the NOAA Atlas 14 standard design precipitation in 23% of the CONUS

Extreme Value Snow Water Equivalent and Snowmelt for Infrastructure Design Over the Contiguous United States

Eunsang Cho^{1,2,3,4} D and Jennifer M. Jacobs^{1,2}

¹Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, USA, ²Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA, ³Now at Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA, ⁴Now at Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA

