2018 NH Coastal Climate Summit June 20, 2018

Julie LaBranche, Senior Planner

(603) 778-0885 <u>www.rpc-nh.org</u>

Robert M. Roseen, PE

(603) 686-2488(c) <u>rroseen@waterstone-eng.com</u>

OVERVIEW

- Innovative Communication Methods
- Climate Adaptation Policy
- Resilient Stormwater Management

This project was funded, in part, by NOAA's Office of Coastal Management under the Coastal Zone Management Act in conjunction with the NH Department of Environmental Services Coastal Program.

Innovative Communications

Climate Change – Adaptation - Resilience

Ensuring a Successful Initiative

What is unique about the watershed or area of interest?

What resources are important, prominent, and tell the story?

What is the placed-based connection?

Who are the key stakeholders to engage?

What is the community benefit?

Innovative Communications

Educational installation at Main Street and Lincoln Street Elementary Schools Reaches students Kindergarten through grade 5, yearly reinforcement, workbooks

Water Cycle, Flooding Surface interactions Natural Wetlands Constructed Wetlands Porous Pavement Stormwater Management

Innovative Communications

Educational installation at Swasey Parkway, Exeter

Highly Visited Area – Permanent Messaging – Expand with Future Installations

The Exeter River is a 128-square mile (81,726 acre) freshwater watershed which drains all, or portions of 12 towns in the seacoast area of New Hampshire. The Squamscott River is a tidal tributary of the Great Bay Estuary which drains to the Atlantic Ocean. The Exeter River and the Squamscott River meet

Blueback Herring. The Exeter-Squamscott River provides habitat for over 17 fish species including Brook Trout, Small and Large Mouth Bass, Yellow Perch, Smelt, and Chain Pickerel.

A variety of shorebirds feed on animals and fish that live in the saltmarshes including the Mallard Duck Black Duck Blue-Wing Teal Duck, Green-Wing Teal Duck, Osprey, Bald Eagle, Great Blue Heron, of plants and animals. A saltmarsh has low marsh grass which is submerged at high tide, and high marsh grass along its upper fringe. Saltmarsh plays an important role in protecting roads, buildings and homes by storing tidal floodwater during highest annual tides and during storm events. However because of its proximity to development, saltmarsh is threatened by pollution running off of the land.

Research in N.H. reports that sea levels may

projections range from a low of 1.7 feet to

a high of 6.6 feet. In a natural environment,

saltmarsh is able to move inland with rising

where obstacles such as roads and buildings

💌 🛃 🗫 🛛

sea levels but in a "built" environment

prevent this process from happening

an increase in sea level could transform

saltmarsh into mudflats or open water.

rise up to several feet, or more, by 2100

This project was funded, in part, by NOAA's Office of Coastal Management under the Coastal Zone Management Act in conjunction with the NH Department of Environmental Services Coastal Program.

Exeter-Squamscott Rivers Watershed Facts Importance of Saltmarsh **Riverine Ecosystems** Impacts of Sea-level Rise

Climate Adaptation Policy (draft)

Vision Statement

Proactive strategies are identified and implemented that address the impacts of coastal hazards and climate change to create a more sustainable and resilient community.

Purpose

Unified vision, goals, and actions Guide planning, investment, management, regulations Support for grants and other funding sources Living document, informed by best available science/information

Climate Adaptation Policy (draft) Goals

Ensure the community is better prepared to protect the security, health and safety of its citizens.

Protect natural resources from the impacts of flooding from sea-level rise and storm events.

Provide for a stable and viable economic future.

Minimize the future costs of infrastructure replacement and maintenance.

Support installations of renewable energy systems and electric vehicle charging stations.

Municipal Policy and Actions Management and Investment Environment-Natural Resources Regulatory and Land Use Planning Community-Based

Climate Adaptation Policy (draft)

Recipe for Process/Methods

- ✓ Supported by Master Plan
- ✓ Audit of Zoning and Regulations
- ✓ Community Initiatives and Activities
- Capital Improvement/Infrastructure
 Management Plans
- Coordination with elected officials, staff, boards, commissions
- Exeter "Climate Proclamation" (to uphold principles of Paris Climate Accord)

STORMWATER RETROFIT OPPORTUNITIES

- 1. The total annual nitrogen load from the 179-acre Lincoln Street watershed is 1,265 pounds.
- 2. The project identified green infrastructure retrofit opportunities for 14 stormwater installations
- 3.BMPs expected to reduce nitrogen load by 691 pounds annually, a 76% reduction.
- 4.Retrofit unit costs averaged \$1,000 and ranged from \$498 \$5,080 per pound of nitrogen in comparison with \$1,200 for the new wastewater facility
- 5.The estimated cost to implement green infrastructure retrofits at these 14 locations is \$689,000.

Rain Garden

Tree Filter

FLOOD REDUCTION FROM GREEN INFRASTRUCTURE

- Flood reduction volume from green infrastructure are estimated at 60% for the current 10-year storm and 50% for the projected year 2040 storm event with 9.21 feet of storm surge.
- 2. The figure shows the modeled flood impact with and without green infrastructure for the 2040 rainfall and storm surge conditions with and without water quality volume best management practices

FLOODING WITH AND WITHOUT BMPS

PCSWMM Results for 10-year, 24-hour Storm Event (4.72 inches)

BMP 9 Proposed Location

BMP4 Proposed Location

BMP7ProposedLocation

BMP 8 Proposed Location

Flood Extent - Baseli	ine
Flood Extent - 1/2" W	/QV BMPs
Flood Extent - Flood	-Sized BMP
Flood Extent - 1/2" W Flood Extent - Flood	/QV BMPs -Sized BM

and the second s	BMP #	Drainage Area (acres)	Annual TN Load (lbs)	Annual TN Reduction (lbs)	% Load Reduction	25% Design Cost Estimate	\$/LBS NITROGEN
	4	34.7	275	206	75%	\$312,000	\$1,500
	7	7.4	58	43	75%	\$35,000	\$800
	8	16.0	108	82	76%	\$84,000	\$1,000
	9	5.9	48	36	76%	\$38,000	\$1,000
	Total	64.0	489	367	75%	\$469,000	-

ECONOMIC BENEFITS OF FLOOD AVOIDANCE

Photo: Flooding at Exeter Town Landing March 2018 Nor'easter

- The estimated flood loss from a current 10-year storm is \$6.11 million or \$3.43 million with green infrastructure, a 51% reduction.
- 2.The total estimated cost to implement green infrastructure at 14 sites is \$689,000.
- 3.The greatest benefit is from small sized Best Management Practices that provide water quality and flood protection for a 0.5" storm, the most frequent annual rainfall event.

Damage in \$ Millions for 10-YR 24 Hour Storm Baseline Flooding vs. 0.5" WQV BMPs

LOW MAINTENANCE GREEN INFRASTRUCTURE WITH PRETREATMENT IS ESSENTIAL

- Goal is to use existing staff, equipment for standard catch basin cleaning
- Land-use and trash and debris load
- Aesthetics
- Cost to maintain versus cost of pretreatment
- In urban environments return on investment may be 1-2 years

Condition Shortly After Install

Mini Cooper Bioswale with PREX

PRETX Pretreatment by ACF

Condition After Winter

RIGHT OF WAY – PLANTERS AND INFILTRATION

ROW Infiltration/Filtration

Thank you!

Robert M. Roseen, PE

(603) 686-2488(c) rroseen@waterstone-eng.com

Julie LaBranche, Senior Planner

(603) 778-0885 www.rpc-nh.org

EXETER STORMWATER RESILIENCE LINCOLN STREET PHASE II PROJECT

Project Summary and Goals

1.	Achieve municipal capacity building around planning for climate	
	change and flood events.	Resilient Green Infrastructure

20.00

Retrofit Opportunit

- 2. Implement public outreach and communication to build support for Climate Adaptation Policy and understanding of adaptation planning including economi considerations.
- 3. Advance green infrastructure and other effective means of Innovative Messaging adaptation implementation for flood damage avoidance and water quality improvements

Watershed Assessment, Flood Analysis, and Adaptation with Green Infrastructure

- 1. The total annual nitrogen load from the entire Lincoln
- Street watershed is 1,265 pounds 2. Installation of BMPs 1, 2, 3, 4, 5, 7, 8 and 9 is expected to reduce this load by 691 pounds annually, a 76%
- 3. The 8MP unit cost perfo ranged from \$498 - \$5,080
- is estimated to be \$1,200 f \$3 mg/L
- Flood redu 10-YR storm and 50% for 9.21 ft of storm surge.
- These activities address NH Small MS4 General P
- nitrogen source ide optimization and pr

4543

Resilient Green Infrastructure

- 1. New Hampshire coastal communities have experienced rising populations resulting in an increase in development in nitrogen pollution and flooding from impervious surfaces.
- 2. Green infrastructure is an effective method to both improve water quality and avoid stormwater related flood damages.
- 3. The use of green infrastructure supports other economic and quality of life benefits such as creation of attractive public spaces, and landscaping that supports walkable communities.
- 4. This project developed construction-ready designs for inclusion in future capital improvement projects in Exeter's largest subwatershed.

-

Performance of Stormwater Retrofits

- 1. The total annual nitrogen load from the 179-acre Lincoln Street watershed is 1,265 pounds.
- The project Exeter Resilience project identified green infrastructure retrofit opportunities for 14 stormwater installations expected to reduce nitrogen load by 691 pounds annually, a 76% reduction.
- Retrofit unit costs averaged \$1,000 and ranged from \$498-\$5,080 per pound of nitrogen in comparison with \$1,200 for the new wastewater facility The estimated cost to implement green infrastructure

Photo: Flooding at Exeter Town Landing March 2018 Nor'easter

Green Infrastructure and **Climate Adaptation**

New Hampshire coastal communities have experienced

- rising populations resulting in an increase in impervious surfaces, stormwater runoff, and associated flooding.
- At the same time, communities are faced with a changing climate including extreme rainfall events and sea-level rise Green infrastructure is an important form of climate
- adaptation which can have significant economic benefits for flood damage avoidance.
- The Exeter Resilience project conducted a cost impact analysis to evaluate the potential for flood damage avoidance with implementation of green infrastructure

Flood Damage Avoidance

 The cost impact analysis graphic at right shows the potential for flood damage avoidance with implementation of green infrastructure. The estimated flood loss from a current 10-year storm is .11 million or \$3.43 million with green infrastructure, a

% reduction e total estimated cost to implement green infrastructure 14 sites is \$689,000. e greatest benefit is from small sized Best Management ctices that provide water quality and flood protection

r a 0.5" storm, the most frequent annual rainfall event.

Green Infrastructure Flood Reduction

9

Damage in \$ Millions for 10-YR 24 Hour Storm eline Flooding vs. 0.5" WQV BMPs

EXETER STORMWATER RESILIENCE FLOOD REDUCTION FROM GREEN INFRASTRUCTURE

Flood Reduction from Green Infrastructure

- 1. New Hampshire coastal communities have experienced rising populations resulting in an increase in development in nitrogen pollution and flooding from increased impervious surfaces and increased stormwater runoff.
- 2. At the same time, communities are faced with a changing climate, including increased extreme rainfall events and sea-level rise.
- 3. Green infrastructure is an important method to both improve water quality and avoid flood related damages.
- 4. Flood reductions from green infrastructure implementation are estimated at 60% for the current 10-year storm and 50% for the projected year 2040 storm event with 9.21 feet of storm surge.
- 5. The figure below shows the modeled flood impact with and without green infrastructure for the projected year 2040 rainfall and storm conditions with and without water quality volume best management practices

8

100

* Proposed BMI

K

EXETER STORMWATER RESILIENCE LINCOLN STREET PHASE II PROJECT

4

2. Implement public outreach and communication to build support for and

3. Advance green infrastructure and other effective means of adaptation implementation for flood damage avoidance and water quality

understanding of adaptation planning including economic considerations

Project Summary and Goals

and flood events.

improvements

Resilient Green Infrastructure

Climate Adaptation Policy

Innovative Messaging

Exeter Climate Adaptation Policy (draft)

The purpose of a Climate Adaptation Policy (CAP) is to guide local decision making and investment in climate adaptation and implementation actions. The CAP is supported by statements in the Vision section of the Master Plan (draft 2017) which states that local government will protect the welfare of residents and continue to provide suppor that helps prepare for a changing climate. Elsewhere in the Master Plan, responses to changes in climate and its impacts are detailed in the Support, Steward and Prepare sections as well as in the Action Agenda.

VISION FOR THE FUTURE "Proactive strategies are identified and implemented that address the impacts of climate change to create a more sustainable and resilient community."

CLIMATE ADAPTATION POLICY PRINCIPCLES. IMPLEMENTATION ACTIONS -FOCUS AREAS Ensure the community is better prepared to protect the security, health and safety of its citizens. - Municipal Policy and Actions Protect natural resources from the impacts of flooding from sea-level rise - Management and Investment and storm events Environment-Natural Resources Provide for a stable and viable economic future. - Regulatory and Land Use Minimize the future costs of infrastructure replacement and maintenance. Planning Support installations of green infrastructure, renewable energy systems and - Community-Based electric vehicle charging stations.

Rockingham Planning Commission

Rain Garder

<

Nutrient Removal Unit Cost Comparison

Nutrient Control Strategy	Total Annual Cost	Life Cycle Cost Estimate	Lbs N Reduced Per Year	Unit Cost \$/Lb N
Durham WW 5 mg/L ¹	\$971,140	\$13,800,000	5,254	\$2,627
Durham WW 3 mg/L ¹	\$1,680,340	\$23,200,000	8,757	\$2,649
WW Incremental Increase ¹	\$709,200	\$9,400,000	3,503	\$2 <i>,</i> 683
Durham NPS IC Program ¹	\$95,000	\$475,000	250	\$1,900
WISE NPS @ IP 3/5/8 mg/L ²	\$453,333	\$13,600,000	17,000	\$800
WISE WW @ IP 3/5/8 mg/L ²	\$3,046,667	\$91,400,000	95,000	\$962
WISE Total @ IP 3/5/8 mg/L ²	\$3,500,000	\$105,000,000	112,000	\$938
Exeter WW 3 mg/L ³	\$5,789,000	\$115,780,000	95,400	\$1,214

Notes and Assumptions

Data is from 2012 Oyster River Watershed Integrated Management Plan by VHB, NOS data generated by VHB, WW data by Wright Pierce Facilities Plan Draft

WW data reported is based on 7 month period. It was not adjusted for 12 months as perhaps should be considered for direct comparison with NPS

Assumes 20 Yr SRF Loan for Exeter @3.25% with no state or federal aid

Life Cycle includes capital and operations and maintenance

```
Present worth is capital at 20-yr;
```

```
Data sources: <sup>1</sup> ORWIMP 2014; <sup>2</sup> WISE 2015, <sup>3</sup> Wright Pierce 2014
```