Financial Adaptation to Sea Level Rise and Storm Surge

The COAST Approach and Issues to Consider in Coastal New Hampshire

Samuel B. Merrill, Ph.D. June 29, 2011

Muskie School of Public Service

University of Southern Maine Portland, Maine

Environmental Finance Center Network

The EFCN is the only university-based organization creating innovative solutions to managing costs of environmental protection and improvement. It consists of ten EFCs serving states within EPA's ten regions. By sharing and integrating information, tools and techniques, the EFCs work together and with the public and private sectors to promote a sustainable environment, <u>bolstering efforts to address difficult how-to-pay issues</u>.

Portland Sea Level

Time (years)

Portland Tide gauge = global ocean over last century 1.8 mm/yr (IPCC, 2007). In Maine, this is the fastest in past 3000 years Satellite altimetry (1993-2003) = global sea level 3.1 ± 0.7 mm/yr (IPCC, 2007)

Bruun's Rule: each increment of vertical sea level rise (x) produces a landward retreat of the beach profile at a ratio of 1:100 (100 times x). One foot of sea level rise produces a 100-foot landward retreat of the beach profile.

Population flooded (millions/year)

-- Nicholls et al. 2006, Philos. Trans. R. Soc. Lond.

- More frequent flooding
- More coastal erosion
- Wetland inundation and loss

The Old Port, 3/10 at high tide (D. Yakovleff)

The Old Port, 3/10 at high tide (D. Yakovleff)

Whole Foods1/9/10 at high tide (R. Obrey.)

Marginal Way and Cove St., 9/10, New Moon (J. Piribeck)

Marginal Way and Cove St., 9/10, New Moon (J. Piribeck)

Frequency of Atlantic Storms

NatCatSERVICE

Great natural catastrophes worldwide 1950 – 2010 Overall and insured losses with trend

Adaptation Works

Homeowners in Florida could reduce losses from a severe hurricane by 61 percent, resulting in \$51 billion in savings, simply by building to strong construction codes.

Wharton Risk Management and Decision Processes Center, University of Pennsylvania.

"Managing Large Scale Risks in a New Era of Catastrophe." 2007

Risk-Based Land Use Planning Protect development from coastal hazards

Consider climate change in plans

Provide no-build/no-rebuild zones

Provide incentives to relinquish property or development rights

Rolling Easement

Strengthened Ecosystems

Make essential natural infrastructure part of any adaptation strategy

Protect and restore these features through adaptation funding, risk-based land use planning, and post-disaster rebuilding

SUSPENDED WETLANDS SECTION WESTPORT DEVELOPMENT, BALTIMORE 17 January 2008

Kristina H i l l

Occupation of the New Marsh Edge

Wetland Impacts

"The impact of sea level rise on coastal wetlands will depend in large measure on whether developed areas immediately inland of the marsh are protected from rising sea level by levees and bulkheads. In a Charleston case study, protecting developed areas would increase an 80 percent wetland loss to 90 percent for a five-foot rise. In a nationwide analysis, structural protection would increase a 30-80 percent loss to 50-90 percent."

EPA's Office of Policy, Planning, and Evaluation (http://papers.risingsea.net/Sea-level-rise-and-coastal-wetlands.html)

Climate Change>>Sea Level Rise>>Storm Surge

Patriot's Day Storm 2007: York Beach

Take home message:

 "having a coastal property located outside a FEMA-defined flood zone doesn't necessarily mean the property owner is free from risk since there are many areas with little correlation between flood zones and storm surge inundation zones" The Effects
of Climate
Change on
Economic
Activity
in Maine:
Coastal York County
Case Study

Climate change can have significant ramifications for Maine's economy. If short-term projections for the next century are accurate, at minimum sea level rise will become increasingly noticeable in association with more severe and destructive coastal storms. Charles Colgan and Samuel Merrill evaluate risk estimates by presenting a case study of the projected consequences of sea level rise and coastal storm damage on the economy of the state's most vulnerable area, York County's coastal communities.

by Charles S. Colgan

Samuel B. Merrill

Employment Locations in York County Coastal Communities 2007

Source: Maine Department of Labor Quarterly Census of Employment and Wages

Old Orchard Beach: Employment At Risk by Different Size Storms

Percent of Town Economy in At Risk Employers

Within the SLOSH Model Zone, the biggest threat is to Establishments Related to Tourism

Industry of Employment: SLOSH Model Risks

In the High Sea Level Rise Scenario, the Industries at Risk Substantially Expand

Employment at Risk Within SLOSH Model Predictions

			Average Third	
		Annual Average	Quarter	Total Annual
	Establishments	Employment	Employment	Wages ('000's)
BIDDEFORD	24	183	209	\$4,511
KENNEBUNK	32	274	341	\$5,338
KENNEBUNKPORT	67	524	812	\$11,835
KITTERY	7	121	119	\$7,026
OGUNQUIT	13	88	167	\$1,817
OLD ORCHARD BEACH	103	470	977	\$7,345
SACO	7	49	85	\$813
WELLS	19	176	260	\$3,700
TOTAL	272	1,885	2,971	\$42,385

Coastal Flooding in Boston under Present and High Emission Sea Levels

New England Environmental Finance Center

Coastal Flooding in Boston under Present and High Emission Sea Levels

Ways to Frame Climate Adaptation

- Be honest. Respect feelings and beliefs. Empower citizen involvement when possible.
- Make it local.
- Make it concrete, not abstract.
- Make it now, not later.
- Talk about trade offs between risks and benefits, and the benefits of adapting sooner rather than later.
- Frame adaptation within the context of local attitudes towards climate change. (There are other reasons than climate change to take many adaptive actions).

From "Climate Skeptics Embrace Cleaner Energy."

http://www.nytimes.com/2010/10/19/science/earth/19fossil.html?ref=us

DAMAGE FUNCTIONS FOR SINGLE FAMILY RESIDENTIAL STRUCTURES WITH BASEMENTS

Structure Depth-Damage

Table 1					
Structure					
One Story, With Basement					
		Standard Deviation			
Depth	Mean of Damage	of Damage			
-8	0%	0			
-7	0.7%	1.34			
-6	0.8%	1.06			
-5	2.4%	0.94			
-4	5.2%	0.91			
-3	9.0%	0.88			
-2	13.8%	0.85			
-1	19.4%	0.83			
0	25.5%	0.85			
1	32.0%	0.96			
2	38.7%	1.14			
3	45.5%	1.37			
4	52.2%	1.63			
5	58.6%	1.89			
6	64.5%	2.14			
7	69.8%	2.35			
8	74.2%	2.52			
9	77.7%	2.66			
10	80.1%	2.77			
11	81.1%	2.88			
12	81.1%	2.88			
13	81.1%	2.88			
14	81.1%	2.88			
15	81.1%	2.88			
16	81.1%	2.88			

Expected costs and damages, 2010 - 2050

SLR Scenario	Adaptation	Residual Damages	Adaptation Cost	Total Damages and Costs	
		(\$ million)	(\$ million)	(\$ million)	
No SLR	No Action	680	0	680	
	50 yr flood 100 yr flood	3.4 0	52.4 60	55.8 60	
	100 yr 1100 u	O	00	00	
Low	No Action	899.3	0	899.3	
	50 yr flood	28.3	52.4	80.7	
	100 yr flood	0	60	60	
High	No Action	1016.6	0	1016.6	
	50 yr flood	67.8	52.4	120.2	
	100 yr flood	37.6	60	97.6	

Maine Sea Level, 1912-2100

Input: a range of adaptation options

- Revetments
- Geotextile tubes
- Sea walls
- Jetties

- Wet or dry floodproofing
- Zoning and other regulatory changes

Scenarios		Max. Water Elev. (ft., NAVD88)	Engineering Options	Construction Costs	Annual Maintenance Costs
Sea level rise, normal tides	Α	3.2 – 4.0	No action up to minimal flood proofing and infrastructure elevation along river.	Insignificant	Insignificant
	В	5.5 – 6.5			\$75,000
	С	5.4		\$18 Million	
100-year storm event in 2010	D	7.4	Hurricane Barrier at Mystic River entrance.		
	Ε	7.0			
10-year storm in 2070, Hi SLR	F	8.9	Hurricane Barrier at Mystic River entrance. ADDITIONAL FORTIFICATION and elevating the	\$27-30 Million	\$100,000
	G	8.6	railroad, as well as increased diking to east.		
100-year storm in 2070, Hi SLR	Н	10.5	Hurricane Barrier at Mystic River entrance. FURTHER FORTIFICATION and elevating the railroad, as well as increased diking to east.	\$35 Million	\$120,000

Scenarios		Max. Water Elev. (ft., NAVD88)	Engineering Options	Construction Costs	Annual Maintenance Costs
Sea level rise, normal tides	Α	3.2 – 4.0	No action up to minimal flood proofing and infrastructure elevation along river.	Insignificant	Insignificant
	В	5.5 – 6.5			
	С	5.4			
100-year storm event in 2010	D	7.4	Hurricane Barrier at Mystic River entrance.	\$18 Million	\$75,000
	Ε	7.0			
10-year storm in 2070, Hi SLR	F	8.9	Hurricane Barrier at Mystic River entrance. ADDITIONAL FORTIFICATION and elevating the	\$27-30 Million	\$100,000
	G	8.6	railroad, as well as increased diking to east.		
100-year storm in 2070, Hi SLR	H	10.5	Hurricane Barrier at Mystic River entrance. <u>FURTHER FORTIFICATION</u> and elevating the railroad, as well as increased diking to east.	\$35 Million	\$120,000

Ways to Frame Climate Adaptation

- Be honest. Respect feelings and beliefs. Empower citizen involvement when possible.
- Make it local.
- Make it concrete, not abstract.
- Make it now, not later.
- Talk about trade offs between risks and benefits, and the benefits of adapting sooner rather than later.
- Frame adaptation within the context of local attitudes towards climate change. (There are other reasons than climate change to take many adaptive actions).

From "Climate Skeptics Embrace Cleaner Energy."

http://www.nytimes.com/2010/10/19/science/earth/19fossil.html?ref=us

Input: a range of adaptation options

- Revetments
- Geotextile tubes
- Sea walls
- Jetties

- Wet or dry floodproofing
- Zoning and other regulatory changes

Output: a range of "economic floodplains"

Lost real estate values (e.g., Groton, CT)

Output: a range of "economic floodplains"

- Lost real estate values (e.g., Groton, CT)
- Lost economic output (e.g., 8-town coastal ME study)

Output: a range of "economic floodplains"

- Lost real estate values (e.g., Groton, CT)
- Lost economic output (e.g., 8-town coastal ME study)
- Infrastructure costs (e.g., 100' bridges in Maine)

New England Environmental Finance Center

A Financial Impact Assessment of LD 1725: Stream Crossings

Prepared by: The New England Environmental Finance Center For the Maine Department of Transportation Office of Environmental Planning

- Lost real estate values (e.g., Groton, CT)
- Lost economic output (e.g., 8-town coastal ME study)
- Infrastructure costs (e.g., 100' bridges in Maine)
- Displaced persons (getting started in Boston)

- Lost real estate values (e.g., Groton, CT)
- Lost economic output (e.g., 8-town coastal ME study)
- Infrastructure costs (e.g., 100' bridges in Maine)
- Displaced persons (getting started in Boston)
- Lost natural resources values (collaborators wanted)

- Lost real estate values (e.g., Groton, CT)
- Lost economic output (e.g., 8-town coastal ME study)
- Infrastructure costs (e.g., 100' bridges in Maine)
- Displaced persons (getting started in Boston)
- Lost natural resources values (collaborators wanted)
- Lost cultural resources values (e.g., NPS gravesites)

- Lost real estate values (e.g., Groton, CT)
- Lost economic output (e.g., 8-town coastal ME study)
- Infrastructure costs (e.g., 100' bridges in Maine)
- Displaced persons (getting started in Boston)
- Lost natural resources values (collaborators wanted)
- Lost cultural resources values (e.g., NPS gravesites)
- >> Software development is underway. Core shell is customizable for CBA on a range of vulnerable asset types.

Possible Activities in Coastal New Hampshire

- Stakeholders identify vulnerable assets to model.
- Stakeholders identify adaptation actions to consider.
- EFC runs calculations, produces maps and tables, and communicates results to group.
- Stakeholders use products in planning process as appropriate.

Contact info:

Sam Merrill:

smerrill@usm.maine.edu

207-228-8596

New England Environmental Finance Center:

http://efc.muskie.usm.maine.edu

Thank you!

Revetments

Pea Patch Island, DE (Delaware River)

- Revetments
- Geotextile tubes

"Facing the bluntness of reality is the highest form of sanity and enlightened vision."

- Chogyam Trungpa Rinpoche

- Revetments
- Geotextile tubes
- Sea walls

- Revetments
- Geotextile tubes
- Sea walls
- Jetties

Learn the alchemy
True human beings know.
The moment you accept
what troubles you've been given,
The door will open.

- Jalallabad Rumi, 13th Century Persia

