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ABSTRACT. Accurate quantification of ecosystem services (ES) at regional scales is increasingly important for making informed
decisions in the face of environmental change. We linked terrestrial and aquatic ecosystem process models to simulate the spatial and
temporal distribution of hydrological and water quality characteristics related to ecosystem services. The linked model integrates two
existing models (a forest ecosystem model and a river network model) to establish consistent responses to changing drivers across
climate, terrestrial, and aquatic domains. The linked model is spatially distributed, accounts for terrestrial–aquatic and upstream–
downstream linkages, and operates on a daily time-step, all characteristics needed to understand regional responses. The model was
applied to the diverse landscapes of the Upper Merrimack River watershed, New Hampshire, USA. Potential changes in future
environmental functions were evaluated using statistically downscaled global climate model simulations (both a high and low emission
scenario) coupled with scenarios of changing land cover (centralized vs. dispersed land development) for the time period of 1980–2099.
Projections of climate, land cover, and water quality were translated into a suite of environmental indicators that represent conditions
relevant to important ecosystem services and were designed to be readily understood by the public. Model projections show that climate
will have a greater influence on future aquatic ecosystem services (flooding, drinking water, fish habitat, and nitrogen export) than
plausible changes in land cover. Minimal changes in aquatic environmental indicators are predicted through 2050, after which the high
emissions scenarios show intensifying impacts. The spatially distributed modeling approach indicates that heavily populated portions
of the watershed will show the strongest responses. Management of land cover could attenuate some of the changes associated with
climate change and should be considered in future planning for the region.
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INTRODUCTION
Understanding changes in ecosystem services at regional scales is
increasingly important for environmental scientists, managers,
planners, and decision makers as climate and land-use change
continue (de Groot et al. 2010). Management decisions require
an improved understanding of the drivers and processes that
influence ecosystem services. Change in major environmental
drivers, such as climate and land cover, typically result in large
changes in ecosystem service supply (Schroeter et al. 2005). These
changes are interactive and complex across space and time (Chen
et al. 2013), requiring the development of appropriate methods
to elucidate functional tradeoffs between management strategies.
In order for stakeholders and citizens to be able to assess the value
of the ecosystem services being provided, they need them to be
expressed in terms of indicators that clearly relate to
environmental condition (Nelson et al. 2009, Carpenter et al.
2015, Qiu and Turner 2015). Indicators of ecosystem services
should be quantifiable, scalable (Bagstad et al. 2013a, Carpenter
et al. 2015), explicit in time and space, and sensitive to land-cover
or management change (Burkhard et al. 2012, van Oudenhoven
et al. 2012). Moreover, the appropriate indicator is dependent on
the method by which the ecosystem service is being valued (de
Groot et al. 2010). Commonly used indicators that are easily

monetizable may be incomplete for more comprehensive
sociocultural preference valuations (Mavrommati et al. 2017).  

Aquatic ecosystems are strongly influenced by terrestrial
environments in their watersheds. Indicators of environmental
condition related to climate and land cover can be generated at
regional scales from existing meteorological observations,
downscaled projections, land-cover atlases, or land-cover change
scenarios (Queiroz et al. 2015). However, these simple evaluations
are difficult in freshwater systems because responses depend on
terrestrial and climate conditions integrated over entire
watersheds and that vary over time. Terrestrial environments,
interacting with climate, determine flow, temperature, and
nutrient regimes in regional drainage networks (Poff et al. 1997).
Hydrology is the overriding control of many aquatic ecosystem
services (Brauman et al. 2007) influencing water availability,
instream habitats, water temperatures, and nutrient fluxes.
Aquatic ecosystems are further influenced by internal processes
such as temperature re-equilibration and nutrient removal as
water flows from upstream to downstream (Hale et al. 2014). To
understand changes in ecosystem services, linked terrestrial and
aquatic ecosystem models are needed to capture the processes
defining responses to changing land cover and climate, partition
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the influence of each, and permit estimation of responses beyond
previously observed ranges.  

A variety of spatially explicit models or tools have been used for
watershed-scale studies of environmental indicators and
ecosystem services. Examples include Artificial Intelligence for
Ecosystem Services (ARIES) (Villa et al. 2009), Multiscale
Integrated Models of Ecosystem Services (MIMES) (Boumans
et al. 2015), and Integrated Valuation of Ecosystem Services and
Tradeoffs (InVEST) (Tallis and Polasky 2009, Bagstad et al.
2013b, Tallis et al. 2013). These models do not capture seasonal
or subseasonal climate variability, which is projected to change
regionally (Wood et al. 2002, Hayhoe et al. 2007, Horton et al.
2014) and is important for capturing watershed functions related
to flood attenuation, water provisioning, river temperature
regulation, and other ecosystem services (Vigerstol and Aukema
2011). To fully account for changes in ecosystem function
associated with altered precipitation, temperature, and land-use
and land-cover patterns, process-based models that incorporate
key space- and time-varying hydrological and ecological processes
are critical (Bagstad et al. 2013b).  

Several processed-based terrestrial and/or aquatic biogeophysical
models have recently been used for ecosystem service valuation
(Logsdon and Chaubey 2012a, Bagstad et al. 2013a, Carpenter
et al. 2015). The Variable Infiltration Capacity (VIC) model is a
large-scale, semidistributed hydrological model (Liang et al. 1994)
that simulated provisioning hydrological ecosystem services
(Vigerstol and Aukema 2011) and flood regulation (Lee et al.
2015). The Soil Water Assessment Tool (SWAT), a process-based,
spatially distributed hydrological and water quality model (Notter
et al. 2012) was used to evaluate aquatic environmental variables,
including water yield (Karabulut et al. 2015) and water quality
(Logsdon and Chaubey 2012b). To compute dynamic ecosystem
services in the agricultural Yahara watershed, a linked terrestrial–
aquatic model used a process-based agroecosystem model (Agro-
IBIS) (Soylu et al. 2014, Carpenter et al. 2015), a terrestrial
hydrology model (THMB) (Coe 2000), a three-dimensional
groundwater flow model (MODFLOW) (Harbaugh 2005), and a
hydrological routing model (HYDRA), which lacked instream
biogeochemistry (Coe 2000). There are a few robust examples of
coupled human and biogeophysical models that have quantified
ecosystem services at global (Boumans et al. 2002) and watershed
(Costanza et al. 2002) scales. The Global Unified Metamodel of
the Biosphere (GUMBO) simplifies several existing dynamic
global models of both natural and social systems at an
intermediate level of complexity and annual time-step (Boumans
et al. 2002). The Patuxent Landscape Model (PLM; Costanza et
al. 2002) is a spatially explicit process-based model that addresses
the effects of both the magnitude and spatial patterns of human
settlements and agricultural practices on hydrology, plant
productivity, and nutrient cycling in the landscape, also at an
annual time-step. Finally, valuation of ecosystem service
information for land-use decisions has been estimated directly
through an agent-based modeling framework (Heckbert et al.
2010, 2014, Groeneveld et al. 2017).  

Our study contributes to the evolution of ecosystem service
models by emphasizing shorter-term temporal dynamics in a
spatially distributed and process-based framework that links
terrestrial and aquatic function. This framework provides a new

perspective for understanding the impacts that climate and land-
cover and land-use change have on terrestrial and aquatic
resources.  

We present an approach that links time-varying (daily time-step)
terrestrial and aquatic ecosystem models at regional scales and
apply this model into the future using scenarios of climate and
land cover to project changes in ecosystem services. First, we
describe an indicator framework that succinctly represents a
comprehensive suite of environmental conditions relevant to
important ecosystem services. Second, we describe the linkage
and validation of the terrestrial and aquatic ecosystem models to
simulate aquatic indicators through the 21st century. We
integrated the Photosynthetic Evapotranspiration-Carbon and
Nitrogen (PnET-CN) forest ecosystem model (Ollinger et al. 2002,
2008, Aber et al. 2005) and the Framework for the Aquatic
Modeling of the Earth System (FrAMES) aquatic ecosystem
model (Wollheim et al. 2008a, b, Wisser et al. 2010, Stewart et al.
2011, 2013, Mineau et al. 2015; Zuidema, Wollheim, Mineau, et
al., unpublished manuscript). These models integrate the dynamics
of terrestrial and aquatic processes and linkages at daily time-
steps, making them ideal for studying aquatic ecosystem
responses in forest-dominated watersheds. In coordination with
a separate effort described elsewhere in this special issue
(Mavrommati et al. 2017) to assess the value of ecosystem services
provided by the Upper Merrimack River watershed (UMRW) of
New Hampshire, we contrast two extremes of projected futures
in climate and land-cover change. The outcome suggests that
climate change influences most indicators of environmental
condition in the UMRW more than changes in land cover,
although land cover has important interactive capacity to dampen
or exacerbate the effects of the changing supply of ecosystem
services in the future.

METHODS
The central goal of this study was to develop estimates of
ecosystem function critical to current and future watershed
residents of the UMRW. We present a description and rationale
for studying this watershed and the development of
environmental indicators relevant to ecosystem services of local
residents. We next describe the integrated terrestrial–aquatic
model that projects aquatic environmental indicators, including
scenarios, parameterizations, and data sets needed to project
aquatic indicators to 2100. Finally, to understand how aquatic
and terrestrial processes control the projected environmental
conditions, we evaluate model sensitivity to a suite of climate and
land-cover change (Thorn et al. 2017).

Upper Merrimack River watershed
The UMRW is located in south-central New Hampshire, USA.
The UMRW comprises 8,000 km² of New Hampshire and drains
through a point just south of the city of Manchester, New
Hampshire (Latitude: +43.6575, Longitude: -71.5005; Fig. 1).
The watershed is currently home to 410,000 people, with ongoing
population growth and land-cover change through extensive
residential development, and is also an important tourist
destination. Annual precipitation currently averages 1,100 mm
yr-1 and is evenly distributed throughout the year. Mean annual
temperature is currently 8.2°C, with mean annual minimums and
maximums of -8.3°C and 22.5°C, respectively. Land cover consists
of a mix of deciduous and evergreen forest (82%), urban (4.2%),
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agriculture (3.8%), wetland (5.9%), and open water (4.2%). As
the dominant land cover, forests are a critical influence on the
aquatic environment, including water supply, water quality, and
aquatic habitat. The watershed sits at the boundary between
strong and weak winters, and is expected to transition to greater
and more variable precipitation and warmer temperatures in
coming decades (Hayhoe et al. 2007, Burakowski et al. 2008, Wake
et al. 2014). The area is also experiencing rapid population growth
and ongoing residential development, which is expected to
continue into the future (U.S. Environmental Protection Agency
(USEPA) 2010). The Merrimack watershed is ranked in the top
five watersheds nationally in terms of projected changes in water
quality due to increase housing density on private forest lands
and ranks at the top of the list in terms of private forest land
projected to experience increased housing density in the USA
(Stein et al. 2009). These changes are leading to increased water
use, nitrogen (N) fluxes, chloride concentrations, and other
changes. Thus, this watershed is an ideal location to focus efforts
in understanding ecosystem service change.

Fig. 1. Merrimack and Piscataqua River networks and
watershed boundaries showing distribution of land cover and
validation data stations.

Environmental indicators
Identifying clear and tangible environmental indicators is a
necessary step to communicate the response of complicated

human–environmental systems to change (Müller and Burkhard
2012) and to track the performance of environmental programs,
regulations, and agencies (Boyd 2004). A multidisciplinary group
consisting of ecologists, hydrologists, engineers, economists, and
decision scientists developed a set of potential environmental
indicators important to the study region. We used an iterative and
collaborative process to distill a set of climate, terrestrial, and
aquatic ecosystem variables to environmental indicators. Changes
in these indicators in response to different climate and land-cover
scenarios were then assigned a relative value by participants in a
set of multicriteria decision workshops described elsewhere
(Mavrommati et al. 2017, Murphy et al. 2017).  

The indicators represented multidecadal average conditions in the
UMRW for the present (1980–2005) and projected for the end of
the 21st century (2070–2099). Candidate indicators had relevance
to climate, land, and water domains. Terrestrial indicators were
based on land-cover scenarios (Thorn et al. 2017) and the
Northern Research Station Climate Change Atlas (Iverson et al.
2008). Climate indicators were based the Geophysical Fluid
Dynamics Laboratory (GFDL) CM2.1 global climate model
(GCM) simulations using the SRES A1Fi (higher) and B1 (lower)
emissions scenarios (Nakicenvoic and Swart 2000) that were
statistically downscaled using the asynchronous regional
regression model (Stoner et al. 2012, Wake et al. 2014). The
downscaled GFDL simulations were used as they provide a
reasonable representation of climate across the northeast USA
(Hayhoe et al. 2007). Given the multiple land-cover and emissions
scenarios used in this study, we only had the capacity to use output
from one GCM. We used downscaled global climate model
simulations for the Franklin, New Hampshire meteorological
station, centrally located within the study domain. Water-related
environmental factors were derived at the watershed scale using
the coupled terrestrial–aquatic process-based model to predict
ecosystem function consistent with the land-cover and climate
scenarios. Generating indicators based on model simulations at
daily time-steps permits the clear definition from key variables
such as concentrations, temperature, or flow volumes compared
with key thresholds relevant at the scale of days. Translation of
environmental indicators to indicators of ecosystem services and
valuation of these services is discussed later in the special issue
(Mavrommati et al. 2017).

Coupling of terrestrial and aquatic models
We coupled the existing forest (PnET-CN) and aquatic (FrAMES)
models to simulate hydrological and water quality characteristics
related to ecosystem services, consistent with forest responses to
climate, at regional scales. The detailed description of the
individual PnET-CN and FrAMES models are presented in
Appendix 1, sections 1.2 and 1.3. The PnET-CN model is widely
used to simulate forest water, carbon (C), and N dynamics (Aber
et al. 2005, Ollinger et al. 2008). The FrAMES model (Wollheim
et al. 2008a, b, Wisser et al. 2010, Stewart et al. 2011, 2013) is a
spatially distributed gridded river network model that has been
applied extensively at various spatial scales ranging from
watershed to global domain for simulating N dynamics in rivers
(Wollheim et al. 2008a, b, Stewart et al. 2011), runoff/discharge
dynamics (Vörösmarty et al. 1998, Wisser et al. 2010), river water
temperature (Stewart et al. 2013), and chloride concentration
(Zuidema, Wollheim, Mineau, et al., unpublished manuscript).
Typically, FrAMES has a land-surface hydrology component that
operates independently of forest dynamics. Here, we substitute
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PnET-CN predictions of runoff and N to load material from
forests to river networks.  

The PnET-CN model accounts for the influence of
photosynthesis on evapotranspiration and nutrient uptake, forest
age, and plant physiological responses (stomatal conductance) to
changing CO2 (Ollinger et al. 2008). Together, these factors
control C sequestration, nutrient export, and runoff generation
immediately relevant to several ecosystem services. In the coupled
model (Fig. 2), PnET-CN calculates daily runoff and dissolved
inorganic nitrogen (DIN) flux from forest rooting zones. These
outputs are then partitioned into shallow groundwater or surface
(quick flow) flow paths, with different characteristic travel times.
In urban regions, precipitation and snowmelt on hydrologically
connected impervious areas run directly to the stream network,
with the remainder infiltrating to lawn areas. Chloride, a potential
stressor of aquatic biota, from snowmelt on the road-salt-treated
fraction of impervious areas is transported conservatively
following the soil and groundwater flow paths (Zuidema,
Wollheim, Mineau, et al., unpublished manuscript). To link with
the aquatic network, we also incorporated the role of terrestrial
flow paths and riparian zones in regulating DIN loads. The PnET-
CN model predicts leaching from the forest rooting zone. To
account for retention along terrestrial–riparian flow paths, we
applied a constant retention factor of 70% to all leachate,
consistent with reactivity of riparian zones (Green et al. 2009) or
buffers that average about 25 m (Mayer et al. 2005). We account
for DIN loading from urban and agricultural areas using an
empirical relationship between DIN, land use, and flow found in
other New England watersheds (Wollheim et al. 2008a, b, Stewart
et al. 2011, Mineau et al. 2015). Water temperature in terrestrial
runoff is modeled as described in Stewart et al. (2013). Water
temperature and DIN inputs from land are further modified by
instream processes as water flow through the river network.

Fig. 2. Conceptual diagram of the terrestrial and aquatic
ecosystem model coupling and factors influencing
environmental indicators.

FrAMES routes water, DIN, water temperature, and chloride
originating from forests and urban and agricultural land through
the river network, accounting for additional point sources of

contaminants, such as N in waste water treatment plant (WWTP)
effluent and thermal loads from power plant cooling water
processes (Stewart et al. 2013, Miara and Vörösmarty 2013). It
also accounts for instream transformations during routing, such
as dilution, denitrification (Wollheim et al. 2008b, Stewart et al.
2011), and instream temperature re-equilibration (Stewart et al.
2013). River discharge, solute masses, and thermal fluxes are
propagated through the gridded river network using a linear
reservoir routing scheme. Thus, PnET–FrAMES accounts for
terrestrial–aquatic and upstream–downstream linkages to
provide a mutually consistent climate, land, and water response
in future scenarios. The model was first applied to historical
conditions (2000–2015) to test against field observations using
downscaled reanalysis meteorological observations and current
land cover. Meteorological forcing for future scenarios used
statistically downscaled climate data from Hayhoe et al. (2007),
and land cover from Thorn et al. (2017). A detailed summary of
the model input data for contemporary and future scenarios is
described in Appendix 2.

Model parameterization
Model parameters were specified a priori. For future scenarios,
parameters that are responsive to human management were
altered to be consistent with each scenario narrative (Table 1).
Key parameters include the fraction of hydrological connected
imperviousness (affecting flow regime, total runoff), road salt
application rates (affecting water quality), suburban and
agricultural DIN nonpoint loading, and WWTP DIN point
loading (affecting N exports). We are using the term “land cover”
in describing future changes to the landscape. Management
decisions that are consistent with the land-cover narratives (e.g.,
stormwater and wastewater infrastructure) are included in the
parameterization of FrAMES–PnET. Specific parameterizations
and how they vary by scenario are provided in Appendix 3.

Model testing with observed data
To validate the linked suite of models, we compared model
simulations with data from headwater and downstream gauge
locations to determine how well the spatial and temporal
distribution of inputs, dilution, and processing are simulated.
Observed data represented aquatic conditions at a total of 106
stations located throughout the Merrimack River and the
neighboring Piscataqua River watersheds (Fig. 1). The latter is
included in contemporary simulations to increase the pool of
observations. Mean daily discharge data (1979–2013) were
available from the U.S. Geological Survey (USGS) (n = 41
stations). Additional observed variables, including water
temperature and concentrations of DIN and chloride came from
two networks of in situ sensors: the High Intensity Aquatic
Network (HIAN) (n = 12 stations) and Lotic Volunteer
Temperature Electrical Conductivity and Stage (LoVoTECS)
network (n = 53 stations). Data from the HIAN (Mulukutla et
al. 2015) and LoVoTECS network (LoVoTECS 2012) are
available through the Data Discovery Center (http://ddc.unh.edu)
over the timeframe of 2012–2014 and are also reported in
Contosta et al. (2017). We compared predictions to observations
of both mean annual and mean summer conditions using
contemporary land-cover and climate drivers. We calculated
model prediction errors (MPE) and root mean square errors
(RMSE) for temperature, runoff, and nitrate and chloride
concentrations. We compared predictions in headwater streams
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Table 1. Statistical details of different land-cover scenarios used in this study (based on Thorn et al. 2017).
 

Scenario Cover in 2100 (%) Population Management

Short Name Long Name Forest Ag Dev

Constant Land Cover Constant Land Cover 80 4.2 4.5 410,000 Maintain present-day land cover
Small Community Food Small population Community

Amenities with Prioritization of
Local Food

64 20 4.5 380,000 Centralized municipalities, low-impact
design (stormwater), low-impact
agricultural

Large Community
Wildlands

Large population Community
Amenities with Prioritization of
Wildlands

80 4.6 4.5 975,000 Centralized municipalities, low-impact
design (stormwater), low-impact
agriculture

Backyard Large population Backyard
Amenities

60 2.6 26 975,000 Dispersed and decentralized

(to test predictions of inputs from land) and along the Merrimack
River main stem to test the regionalization and aquatic process
component of the model.

RESULTS AND DISCUSSION

Choice of environmental indicators
The iterative and collaborative process of environmental indicator
selection identified ten indicators, from an initial set of 43 (Table
A2.1), to represent a comprehensive suite of environmental
conditions for the UMRW. The experts group used the criteria
that indicators should hold perceived relevance to the general
public, should equitably represent the three domains, and should
be constrained by existing modeling capability. The selected
indicators represented three indicators for each of land and
climate domains, and four indicators for the water domain. The
indicators are defined in Table 2 and explained in detail in the
supplementary material (Appendix 2). The ten selected indicators
are similar to several included in comprehensive lists generated
previously (de Groot et al. 2010, Burkhard et al. 2012). However,
our final indicators differed from previous lists to be more relevant
to local residents. For instance, we used total forest cover as a
percentage of the watershed instead of wood biomass stock in
units of mass per area (de Groot e al. 2010) based on lack of
relevance of wood biomass to the general public living in the
watershed. The water indicators emphasized basin scale and
subannual estimates of water conditions, requiring space- and
time-varying aquatic modeling. The choice of indicators in
representing specific ecosystem services is discussed more
thoroughly elsewhere in this special issue (Mavrommati et al.
2017).

Regional validation of the coupled model
The component ecosystem models used in this analysis have been
previously validated individually. The PnET-CN model was
validated for water and nutrient balance, (Ollinger et al. 2002,
2008, Aber et al. 2005), whereas FrAMES was validated for river
discharge using a simple water balance model (Vörösmarty et al.
1998, Wisser et al. 2010), water temperature (Stewart et al. 2013),
chloride (Zuidema, Wollheim, Mineau, et al., unpublished
manuscript), and riverine DIN (Wollheim et al. 2008a, b, Stewart
et al. 2011). In this study, terrestrial vegetation processes in PnET–
FrAMES drive regional runoff, nutrient, chloride, and water
temperature loading that is then routed through the network.  

Regional predictions of water variables using PnET–FrAMES
generally compared favorably to observations. Modeled annual

runoff matches observations, with little bias indicated by a low
median model percent error (MPE) of 4.4% (IQR = −5.7–11.7%)

Table 2. Definitions and units of selected environmental
indicators. (P = Person, d = day, yr = year)
 

Selected
Indicators

Description Units

Land
Agricultural
cover

Agricultural land available per
capita

Acre P-1

Forest Cover Watershed in forest cover % watershed
Maple
Suitability

Maple suitable % forest cover

Climate
Very Hot
Days

Days maximum air temperature
exceeds 32°C

d yr-1

Comfortable
Days

Days maximum air temperature
between 21–32°C

d yr-1

Snow Cover
Days

Days snowpack exceeds 150 mm (30
SWE)

d yr-1

Water
Water
Shortfalls

Population duration of water
supply stress

P d yr-1

Flood Risk Population duration of potential
flood impact

P d yr-1

Fish Habitat
Loss

River impaired by temperature,
chloride, or low flow

%

Nitrogen
Export

Nitrogen export exceeding estuary
threshold

kg N yr-1

at gauging stations throughout the project domain (Fig. 3a).
Simulated runoff was somewhat higher than observations during
summer months (median MPE = 15.9%, IQR = −2.5–24.7%) (Fig.
3b). Thus, whereas water indicators based on flow (Table 2) are
reasonably well predicted, the Fish Habitat Loss and Water
Shortfalls indicators (which are triggered by low-flow conditions)
are likely conservative estimates.  

Modeled water temperature across gauging stations is low for
mean annual temperature (median MPE = -17.5%, IQR= −32.7–
−9.2%) with little bias during summer (median MPE = -2.3%,
IQR= −8.1–5.5%) (Fig. 3b). Because the model does well during
summer when temperatures are high, the water temperature
component of the Aquatic Habitat indicator, which is mostly
driven by summer conditions, is robust. No differences in bias
were seen across different river sizes.
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Fig. 3. Box plots of model percent error (MPE) across all sites
(MPE = (P-O) / O * 100) for aquatic variables during annual (a)
and summer (b) time periods (RO: Runoff; DIN: Dissolved
Inorganic Nitrogen, Temp: Water Temperature; where, P is the
predicted values by the model and O is the observed values at
different sampling sites).

Modeled chloride concentrations are reasonable (median MPE
= -4.1%, IQR= -37.8–28.2%) for annual and biased low for
summer periods (median MPE = -23.2%, IQR= -47.0–-3.8% for
annual and summer, respectively) (Fig. 3). The low summer bias
occurs because of a flashier response to summertime diluting
rains than observations (Zuidema, Wollheim, Mineau, et al.,
unpublished manuscript). Rectifying this incompatibility is a
subject of ongoing model improvement. Thus, the indicator that
uses chloride (Fish Habitat Loss) is likely an underestimate,
particularly during summers.  

The PnET–FrAMES model captures the range of variability in
mean annual DIN concentration loaded via nonpoint inputs in
headwater streams of different land cover, which reflect catchment
loading prior to river processing. Predicted DIN loading
concentrations are higher than observed for forested catchments
(n = 4), but show little bias for developed catchments (n = 6) (Fig.
3; Figs. A4.1c, A4.2c). The PnET-CN model is known to
overestimate forest DIN (Zhou, Ollinger, Glidden, et. al.,
unpublished manuscript), and continues to do so here, even though
we added a flow path/riparian retention term to PnET–FrAMES.
As a result of high bias in forested sites, the percent errors for
DIN in Fig. 3 are higher than other variables. However, absolute
error at these sites is very low compared with the more developed
sites (Figs. A4.1c, A4.2c). Overall bias is low in summer (median
MPE = -3.9%, IQR = −53.0–111.4%) but high annually (median
MPE = 17.5%, IQR = −41.8–186.4%). Dissolved inorganic N
concentrations in headwater streams reflect loading because
aquatic net removal has not had the opportunity to impact
concentrations due to short surface water flow paths in small
catchments (Wollheim et al. 2006). Observations along the river
main stem (basin profile, Fig. A4.3a) indicate the model
reasonably represents regional loading, dilution, and aquatic N
removal throughout the river network (Fig. A4.4a).

Regional framework for land, climate, and water indicators to
2100
We characterized the suite of environmental responses to two
land-cover and two climate scenarios selected for the valuation
workshop (Mavrommati et al. 2017) meant to represent extremes

of potential change in future conditions. We drove the model with
the Backyard and Small Community Food Land-Cover scenarios
(Table 1), with higher (A1Fi) and lower (B1) climate scenarios,
respectively (Backyard/High emissions and Small Community
Food/Low emissions).  

Changes in the land indicators (Table 2; Agricultural Cover per
person and Forest Cover) directly reflect the land-cover scenarios
(Thorn et al. 2017) and have important direct ecosystem service
implications. Briefly, in the Backyard scenario, watershed forest
cover declines from 80% in 2010 to 60% in 2100, to accommodate
increased rural and suburban development (Fig. 4). In the Small
Community Food/Low scenario, forest declines to 64% in 2100,
replaced by agricultural lands, primary for pasture and hay. By
2100, population increases by 170% in the Backyard/High
scenario and declines by 5% in the Small Community Food/Low
scenario. The increase in agricultural land relative to population
under the Small Community Food/Low scenario (~1.0 acres per
person in 2100 compared with 0.2 in 2010) increases the potential
for per capita local food production compared with the
contemporary period (Thorn et al. 2017). The Maple Presence
indicator, which primarily represents the geographic distribution
of suitable habitat for Acer saccharum (Iverson et al. 2008),
declines from 49% of total forest cover in the present day to 27%
and 31% in the Backyard/High emission and Small Community
Food/Low emission scenarios, respectively. The declines result
from shifts in climate associated with each land-cover scenario.

Fig. 4. Time series of land environmental indicators for
Backyard Amenities / High Emissions and Small Community
Amenities / Low Emission scenarios through 2100 for (a)
Agricultural Cover (acres/person), (b) Forest Cover
(proportion), and (c) Maple Suitability (% forest cover).

Projected changes in climate indicators in the UMRW are strongly
determined by emission scenario. Present-day climate trends
(Hodgkins and Dudley 2006, Hayhoe et al. 2007, Burakowski et
al. 2008) continue through 2050 regardless of emission scenario
(Fig. 5). Around 2050, the rate of warming is projected to increase
rapidly under the Backyard/High emission scenario. With the high
emission scenario, the hot days indicator increases sharply,
averaging >45 d above 32°C after 2075 (Fig. 5a). Under the lower
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emission scenario, the multiyear mean for hot days is considerably
lower (<17 d yr-1) (Fig. 5a). The Snow Days indicator declines under
the higher emissions (averaging 18 d yr-1) compared with
contemporary mean (60 d yr-1) and relative to the lower emissions
scenario (47 d yr-1) (Fig. 5c). Again, the change is accelerated after
2040. The Recreation Days indicator changes little under both the
low and high emission scenarios (Fig. 5b). Minimal changes in
recreation days results from loss of recreation days due to days
becoming too hot during the summer being offset by additional
days in the shoulder seasons (spring and fall) that were previously
too cool falling in the recreation day range.

Fig. 5. Time series of climate environmental indicators for
Backyard Amenities / High Emissions and Small Community
Amenities / Low Emission scenarios through 2100 for (a) Very
Hot days (days per year), (b) Comfortable days (days per year),
and (c) Snow Cover days (days per year).

Environmental indicators in the water domain reflect the combined
influence of projected climate and land-cover change, as well as
terrestrial and aquatic processes. In general, all water indicators
reflect increasing degradation of aquatic ecosystem services for the
Backyard/High scenario, but remain relatively unchanged for the
Small Community Food/Low scenario (Fig. 6). The Fish Habitat
Loss indicator is projected to rise substantially in the Backyard/
High scenario to average about 40% of total stream and river length
after 2075. Only slight increases, and fewer extreme events, occur
under the Small Community Food/Low scenario. The Nitrogen
Export indicator increases steadily over the 100-yr period for the
Backyard/High scenario to 995 tons N yr-1 up 3100% from current
conditions. Under the Community/Low scenario, however, N
export changes relatively less, increasing only 70% to an average of
52 tons N yr-1. The steady increase in the Backyard/High scenario
is due to elevated N loading associated with widespread land-cover
change and increased population. The pattern in Community/Low
occurs because in this scenario, agricultural management activities
were assumed to reflect the greater concern for the environment
(optimal fertilizer application rates, improved waste water
treatment plant N removal), and because it reflects a lower human
population (Table 1).

Fig. 6. Time-series of water environmental indicators for
Backyard Amenities / High Emissions and Small Community
Amenities / Low Emission scenarios through 2100 for (a) Fish
Habitat Loss (% river length impairment per year), (b) Nitrogen
Export (106 x kg N per year), (c) Water Shortfalls (Million (M)
person days per year), and (d) Flood Risk (Thousand (k) person
days per year).

The Water Shortfall indicator increases in the future in Backyard/
High (averaging 6×106 person days [pd] yr-1 after the 2075) but
remains unchanged in the Community/Low scenario. The Water
Shortfall indicator increases in Backyard/High despite greater
runoff that occurs due to increased precipitation (1320 compared
with 1270 mm yr-1 between the higher and lower emission scenarios,
respectively) and lower forest evapotranspiration (ET) due to trees
responding to increased atmospheric CO2 by increased water-use
efficiency (Ollinger et al. 2002). The increase occurs because the
greater population (in Backyard) reflects a greater demand that at
times would be unmet.  

The number of people at Flood Risk is expected to increase for
both scenarios, although there is considerable interannual
variability, which is expected because extreme flows only occur
periodically. Total population affected after 2075 by extreme flows
leading to Flood Risk is higher in the Backyard/High scenario
(1.2×105 pd) than in Small Community Food/Low scenario
(4.4×104 pd) because the former has a larger population to
potentially be impacted, has higher flows on average, and has
greater storm runoff due to increased imperviousness.  

Overall, the suite of indicators suggests that relevant environmental
conditions remain relatively stable until 2050 regardless of climate
and land-cover scenario. Beginning in 2050, there is a potential for
climate and water indicators to significantly deteriorate in the high
emission scenario. The timing of the change in water indicators in
Backyard/High suggests primarily a climate control, as climate
changes also show rapid increases at this time (Fig. 5).
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Fig. 7. Distribution of water indicators between 2075–2100 for eight scenarios (four land use and
two climate; Table 1) compared with contemporary range (1980–2005), including (a) Fish Habitat
Loss (km d yr-1), (b) Nitrogen Export (kg N yr-1), (c) Water Shortfalls (P d yr-1), and (d) total
Flood Risk population-duration (P d). Boxes in panels (a)–(c) represent first to third quartiles of
data with line defining median, whiskers extend to 1.5 x IQR, outliers as circles beyond. Bars in (d)
represent the cumulative total population potentially flood affected during the period. Highlighted
columns depict scenarios included in workshop evaluation (Mavrommati et al. 2017) and focused
on Figs. 4–6.

Using coupled models and multiple scenarios to partition
influence of land cover and climate on water indicators
Climate drivers govern the hydrological and biogeochemical
response of catchments, but these changes are mediated by land
use and land cover through impacts of impervious surfaces, plant
growth, evapotranspiration, and water residence time (Ollinger
et al. 2002, Raymond and Saiers 2010, Pellerin et al. 2011,
Goodridge and Melack 2012). The two scenarios described above
convolve both signals (i.e., both climate and land cover differ in
the two scenarios). The relative importance of climate, land cover,
and interactions on the water domain indicators can be
determined by analyzing results from all combinations of the suite
of land-cover change scenarios (Table 1) and both C emission
(climate) scenarios (Fig. 7).  

The relative importance of climate and land cover varies among
the indicators. For Fish Habitat Loss, climate dominates the
response as the high emission scenarios have greater habitat loss
than the corresponding low emission scenario across all land-
cover scenarios (Fig. 7a). Specific land-cover scenarios modify
only moderately the degree of fish habitat loss. Fish habitat loss
is primarily driven by temperature impairment in headwater
streams (Fig. A4.4b), resulting in a 4- to 10-times increase in river
kilometers impacted in the high compared with low emission
scenarios (Fig. 5a, 7a). The Backyard scenario exacerbates fish
habitat changes caused by climate, whereas the three other land-
cover scenarios remain similar. The Fish Habitat indicator is
composed of flow, water temperature, and chloride impairment
(Table 2). The greater degradation in Backyard occurs because of
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the greater abundance of impervious surfaces, with increased
runoff from the land leading to greater spatial and temporal
probability of crossing chloride and water temperature
thresholds. Residential development and associated impervious
surfaces in the Backyard scenario result in greater summertime
heat flux to streams through stormwater runoff relative to other
build-out scenarios. In the Community (both Small Community
Food and Large Community Wild) scenarios, reduced effective
imperviousness from coupling low-impact design buildout with
concentrated development results in negligible increases in heat
flux impacts to rivers and no additional fish habitat loss relative
to current land cover and projected climates.  

For Nitrogen Export, climate is also the primary determinant of
indicator response, but interactions with land cover are also
evident (Fig. 7b). The Nitrogen Export indicator is higher in all
higher emission scenarios relative to lower emission scenarios.
Higher emissions scenarios result in greater coastal N flux than
lower emissions scenarios due to greater loading to the river
system. First, the greater precipitation in high relative to low
emission scenario results in higher atmospheric N inputs as well
as higher water runoff. Second, greater forest N leaching results
from higher temperatures under future scenarios due to declining
uptake by conifers. Third, the river system has reduced capacity
to retain N under higher flow regimes (Wollheim et al. 2008b).
Small Community Food shows little response under the low
emission climate scenario (as discussed above) similar to if  land
cover remained unchanged. Both the Large Community
Wildlands and Backyard scenarios show additional N export
increases relative to other land-cover scenarios, indicating an
interaction between land cover and climate. These scenarios have
similar high populations compared with Small Community Food,
and result in N loading into rivers via domestic waste, either
through septic systems (Backyard) or WWTPs (Large
Community), which lead to increased waste N inputs.  

The Large Community Wildlands scenario projects greater N
export than the Backyard scenario (Fig. 7b), despite the former
conserving more forest, and upgrading WWTPs to higher
treatment levels with lower per capita human waste N inputs. The
logistic loading function that is used to parameterize nonpoint N
inputs to rivers as a function of land cover (Appendix 3) assumes
relatively low N increases for low to moderate density urban and
agricultural development (average increases to about ~21% urban
+ Ag land cover for Backyard and 9% for Large Community
Wildlands). The mechanistic explanation for this pattern is that
N removal by terrestrial ecosystems remains high up to certain
thresholds of natural ecosystem loss, consistent with a number of
previous studies (Groffman et al. 2004, Wollheim et. 2005). The
Backyard scenario assumes a low density of future land-cover
change that is often below the threshold. Thus, human waste
associated with population growth, which is managed through
distributed septic systems and not WWTP, is mostly retained, and
there is relatively little change in N inputs. In contrast, the Large
Community Wildlands scenario assumes domestic waste N is
transferred to WWTP with Total Nitrogen (TN) removal
efficiencies of 90%. The assumption of low response to land-cover
change embedded in the loading function is derived from one
location with a certain social and biogeophysical context (e.g.,
rural/suburban septic infrastructure, wetland abundance, etc.
Wollheim et al. 2008b). Although the generality of this loading

function to the entire domain should be tested more thoroughly,
the validation results suggest it is reasonable and therefore useful
for exploring potential future responses.  

An additional small driver of the difference in N export between
Backyard and Large Community Wildlands was that the former
also presents greater opportunity for instream removal than the
latter because loading occurs to smaller streams (as nonpoint
sources) compared with waste water effluent to larger rivers (as
point sources). The resulting longer lotic travel time and greater
exposure to benthic surfaces provide more opportunities for N
removal through denitrification (Mineau et al. 2015). However,
in our simulations, only an additional 1.6% of total network
inorganic N inputs was removed (denitrified) in the aquatic system
under the Backyard scenario compared with Large Community
Wildlands.  

Water shortfalls are controlled more by land-cover and
population scenarios than by climate scenarios (Fig. 7c). The lack
of a strong climate driver occurs because conditions are expected
to become increasingly wet under both lower and higher emissions
scenarios, alleviating water shortages. The highly dispersed
development of the Backyard scenario places an increasing
population throughout headwater catchments, dependent on well
water. In contrast, the Community scenario places more people
on public water supplies that obtain their water from larger
catchments. The Water Shortfall indicator we used relates water
demand accumulated through the river network (a function of
population and per capita demand) with surface water discharge
in the grid cell. In the Backyard scenario, people are presumed to
depend primarily on wells, not urban water supply infrastructure,
where small catchments have limited hydrological storage. Thus,
demand more frequently outstrips supply in these local areas.
Runoff increases in the higher emission scenario compared with
the lower emission scenario, which reflects a combination of
greater annual precipitation predicted under a warmer climate
and greater forest water-use efficiency under a C-enriched
atmosphere (Fig. A4.4c, d). As a result, the high emission scenario
actually reduces water shortfalls relative to the low emission
scenario (Fig. 7c).  

Flood risk is projected to increase under both emission scenarios
(Fig. 7d), resulting from greater precipitation (Fig. A4.4c)
occurring during extreme events (Hayhoe et al. 2007, Trenberth
2011). Backyard and Large Community Wildlands scenarios
project a larger flood-affected population due simply to the larger
populations compared with other scenarios. Generally, the higher
emission scenario has greater flood risk than the lower emission
scenario, with the exception of the Backyard scenario. High
emissions are expected to have slightly higher precipitation and
runoff relative to low emissions. The Backyard scenario differs in
that more people live further north in the watershed than in the
Community scenario (concentrated on existing urban areas, Fig.
1), which may expose these populations to more extreme flows.

Spatial variability of fish habitat loss
The spatially distributed modeling approach used here is able to
identify changes in environmental indicators relative to human
settlement. As an example, the Fish Habitat Loss indicator, as the
fraction of years with unsuitable habitat, is greatest in the
southern part of the study domain (Fig. 8). Greater impairment
in the southern portion of the watershed occurs because warmer
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Fig. 8. Map showing the spatial variability of one of the critical ecosystem service indicators (Fish Habitat Loss)
as proportion of years when fish habitat loss exceeds impaired levels for the study domain under (a)
Contemporary (1980–2005), (b) Backyard Amenities (2075–2100) high emission (top) and low emission
(bottom), and (c) Community Amenities (2075–2100) high emission (top) and low emission (bottom). Location
of urban population (density > 200/km²) is shown in red in each scenario.

air temperatures increase water temperatures as rivers flow from
north to south (Stewart et al. 2011) and because denser road
networks relative to the northern portions of the watershed
experience greater winter road-salt application.  

The Contemporary period shows elevated fish habitat loss in the
smaller streams in the southern half  of the watershed, but not in
the larger rivers (Fig. 8a). Meteorological droughts in 1981 and
1993 are responsible for the contemporary fish habitat loss, which
was caused by the low flow component of the indicator. It is
possible that future climate from the GFDL GCM used in these
scenarios does not capture longer periods of summer dry
conditions later in the 20th century (Hayhoe et al. 2007, Wake et
al. 2014). Thus, the scenarios presented here may underestimate
the effect of the low-flow criteria on future fish habitat loss (Fig.
8).  

Future scenarios are likely to intensify fish habitat loss near
population centers in the high emission scenarios (Fig. 8b, d, top),
while spreading through more of the previously unimpaired part
of the watershed. In contrast, the low emission scenarios tend to
shrink the footprint of the Fish Habitat Loss indicator, although
retaining the likelihood of impairment near the population
centers (Fig. 8c, e, bottom). The Backyard scenario shows a
stronger response than the Community scenario because greater
impervious cover leads to both increased road-salt loading and
increased temperatures from increased summertime impervious
surface runoff.  

The greater Fish Habitat Loss indicator in large rivers compared
with the contemporary period is particularly evident across all
future scenarios, resulting in large part because of warmer water
temperatures. Large river water temperature responds
disproportionately because atmospheric warming further warms
water as it flows downstream during summers, whereas headwater
streams remain cooler because of groundwater recharged during
cooler times of year. The spatially distributed, time-varying
modeling approach used here allows consideration of
heterogenous impacts to environmental function that can be used
in valuation studies.

Role of land-cover management
Despite the predominant influence of climate on the
environmental indicators in the UMRW, land-cover management
can mitigate degradation to certain attributes of the ecosystem
(e.g., Fig. 8). Build-out scenarios directly influence land-based
environmental indicators such as Forest and Agricultural Cover.
Scenarios that maintain greater forest land have slightly greater
C sequestration (Fig. A4.4e), whereas scenarios with greater
agriculture increase food supply (Thorn et al. 2017) and resiliency
(Tilman et al. 2002). In addition, these land covers affect
numerous sociocultural resources, including water-related
ecosystem services. Depending on the relative value placed on
different indicators (Murphy et al. 2017), the landscape can be
managed to maximize ecosystem services that are most
important.  
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Coupled terrestrial–aquatic models express the understanding of
processes relevant to specific land-cover decisions, permit
exploration of relevant tradeoffs (Antle and Capalbo 2001,
Bennett et al. 2009), and are essential in understanding the
response of ecosystem dynamics to changes in both climate and
land cover. Results from PnET–FrAMES provide a measure of
the potential impact of each land-cover scenario and each climate
scenario on different ecosystem service indicators. As regional
managers have little influence over climate change and because
we are currently on a higher emission trajectory (Pachauri et al.
2014), managers should consider potential land cover in
conjunction with the higher emissions climate scenario to guide
future planning. Projections from PnET–FrAMES suggest that
infilled development (Community) scenarios exhibit two types of
paradigms with respect to specific aquatic environmental
indicators under a high emission future (Fig. 7). The three land-
cover scenarios with limited expansion of the residential footprint
(Constant, Small Community Food, Large Community Wild)
show smaller levels of Fish Habitat Loss and Water Shortfalls
than the dispersed buildout (Backyard). The Large Community
Wildlands scenario represents a doubling of population similar
to Backyard scenario, but has much lower environmental
detriment based on these two indicators. However, the Large
Community Wildlands scenario does show increased impact on
the Nitrogen Export indicator (more point sources) and Flood
Risk indicator (more people along large river corridors) relative
to Backyard, suggesting that there are tradeoffs that must be
further managed under an infilled paradigm.  

The scenarios tested are simple and do not encompass numerous
potential approaches that managers may use to mitigate the
adverse effects of the investigated environmental stressors. The
scenarios do not account for potential nonpoint N runoff controls
including managed riparian buffers (Mayer et al. 2005) or
stormwater control (Collins et al. 2010) that would be consistent
with Community scenarios. Nor do the scenarios account for
novel flood control measures such as blue–green infrastructure
(Thorne et al. 2015) or explicit development outside of flood
zones, because flood zones are mapped at resolutions finer than
our simulations. Therefore, the flood risk identified here may
potentially be mitigated through engineered interventions.
Finally, potential management interventions such as constructed
stream refugia (Sedell et al. 1990, Isaak et al. 2015) are not
considered but could mediate warming stream temperatures for
instream biota, a threat under all build-out scenarios. The
scenarios presented here identify those environmental stressors
that are most likely to need more directed research and
management to mitigate changing populations and expected
warming.

CONCLUSION
Process-based terrestrial–aquatic models are essential for
quantifying potential future environmental impacts due to
spatially distributed changes in land cover and climate. Here, we
simulated dynamic interactions across land and water domains
at a daily temporal resolution and a spatial resolution that
accounts for the heterogeneity and associated processes of the
UMRW in New Hampshire. Our approach linked models of
intermediate complexity to connect terrestrial and aquatic
domains and allowed us to explore the impacts of changes in
climate and land cover on aquatic ecosystems through the use of

different scenario combinations. Process-based models enable
understanding of macroscale ecosystem responses based on
underlying ecosystem processes.  

Water is arguably the most fundamental resource for society, and
it is therefore critical to quantify how water quantity and quality
will respond to projected changes in land cover and climate. Our
results suggest that climate is expected to be the most influential
driver of water-related impairment in the UMRW, although
impacts to climate and aquatic environment conditions are likely
to be modest until mid-century. After 2050, aquatic impacts are
projected to increase rapidly in the high emission scenario, and
degree of change is further influenced by land cover. Because
recent analysis points to the likelihood of a high emissions
scenario (Pachauri et al. 2014), the region should prepare for
changes in ecosystem services. Land-cover management is the
leverage point that local and state decision makers have to adapt
to global climate change, and management interventions that
mitigate changes in population and temperature will need to move
beyond simple land-cover/land-use formulations analyzed here.

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/9662
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Appendix 1. Model Overview  

1.1 PnET-FrAMES 

To facilitate the simulation of aquatic ecosystem variables in the Upper 

Merrimack River Watershed (UMRW), we coupled terrestrial aquatic model that 

simulated forest processes and had regionally specific mechanisms for capturing the 

influence of developed land covers. We utilized the Photosynthesis and 

EvapoTranspiration-Carbon-Nitrogen (PnET-CN) for its proven ability to accurately 

simulate forest processes in New England (Aber and Driscoll 1997, Ollinger et al. 2002, 

Ollinger et al. 2008) and an aquatic process-based model, the Framework for Aquatic 

Modeling of the Earth System (FrAMES) for simulation of instream denitrification 

(Wollheim et al. 2008a, 2008b), routing of discharge and solute fluxes (Zuidema et al. In 

Prep), and instream temperature re-equilibration with the atmosphere (Stewart et al. 

2013) at a daily time-step. The following sections provide detail on the functionality of 

each model component, and a description of specific parameterizations and linkages 

required for the coupling of the aquatic and terrestrial ecosystem models.  

 

1.2 PnET 

PnET-CN is a forest ecosystem model that combines algorithms for processes 

such as photosynthesis, evapotranspiration, litter production, decomposition, and N 

mineralization along with climate inputs to estimate complete fluxes of carbon (C), 

nitrogen (N), and forest water at a monthly time step (Aber and Driscoll 1997, Ollinger et 

al. 2002, Ollinger et al. 2008). PnET-CN is used to predict time varying net primary 

production (NPP), evapotranspiration, carbon storage, wood biomass, and nitrogen 



2 
 

leaching losses associated with forest type, climate variability, atmospheric nitrogen 

deposition, and forest succession. The model was developed and validated in the 

Northeastern U.S. at both site and regional scales (Ollinger et al. 2002, 2008, Aber et al. 

2005 and Zhou et al. In Prep).  In this study, in order to be coupled with FrAMES, we 

revised the monthly model into a daily model that adds the role of impervious surfaces 

and lawns in urban areas to accommodate the coupling with the regional aquatic model 

(Zhou et al. In Prep). Several processes were revised, such as minor revision of 

photosynthesis and foliar growth due to non-linear relationship between photosynthesis 

and climate input. The rain/snow precipitation processes were also modified as 

precipitation in daily time step normally occurs as either rain or snow in winter. It is not 

appropriate to split it for rain and snow as in monthly version because monthly 

precipitation is the sum of rain and/or snow. This improved PnET prediction of snowpack 

and runoff in winter and early spring (Zhou et al. In Prep). 

 

Reasonable physiological response of atmospheric CO2 and acclimation of respiration are 

important for future projections of ecosystem functions in the changing environment. 

Previous version of PnET had a CO2 effect on carbon assimilation using a Michalis-

Menton equation fitted to normalized A-Ci (photosynthesis assimilation and the internal 

CO2 concentration) curves (scaled from 0 to 1 where 1 is CO2 saturated carbon fixation) 

taken from a number of CO2 exposure studies (Ollinger et al. 2002). More newly existing 

empirical data from CO2 exposure studies were added to improve the regression. 

Especially the high end of CO2 concentrations of over 2000 ppm showed much less 

increased effect in photosynthesis than expected (Franks et al. 2013). The revised 
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response function suggested a lower photosynthetic CO2 compensation point of 40 ppm 

compared to the Ollinger et al.’s 68 ppm. If, for example, a change in CO2 from 350 to 

1000 represents the high emission climate scenario, a 59% increase in photosynthesis will 

be predicted by the previous function and only 22% by the revised version. The two 

equations estimate similar relative change in photosynthesis between ambient and 

historical CO2, implying the revision only impact future project.  

 

Evidence suggests that respiration acclimation (RA) to temperature in plants can have 

a substantial influence on ecosystem carbon balance. Previous versions of PnET had not 

included explicit respiration acclimation in a future warming climate. This study 

incorporated temperature-sensitive Q10 and foliar respiration acclimation algorithms in the 

model (Wythers et al. 2013). e.g., at the temperature of 35 oC, the RA algorithms estimate 

a 37% reduction in foliar respiration relative to that using previous version. Wythers et al. 

(2013) reported that averaged across four boreal ecotone sites and three forest types at year 

2100, the enhancement of NPP in response to the combination of rising CO2 and warming 

was 9% greater when RA algorithms were used, relative to responses using fixed 

respiration parameters.  

 

Biogeochemical monitoring for 50 years at the Hubbard Brook Experimental Forest 

in New Hampshire has revealed N export in stream water has steadily declined and is 

presently just a small fraction of atmospheric N input, despite negligible changes in 

aboveground biomass. It implies that the forested ecosystem has shifted to a net N sink 

(Yanai et al. 2013), which could not explained by the previous theory. The “missing” 



4 
 

deposited N were thought to accumulate in the mineral soil, or be lost in gaseous form. 

Processes of N gas losses (i.e., N2O, NO, and N2) through nitrification and denitrification 

were added in PnET-CN to enhance its N cycling and to investigate the role of 

denitrification in the missing N sink (Zhou et al. In Prep). We used first order kinetics to 

estimate N gas losses and partitioned N2O, NO, and N2 based on soil water content. In 

this study, the parameter, denitrification constant was set to the averaged value of 0.03 

(McCray et al. 2005) to represent a more general pattern for a large region, which could 

be potentially underestimate in mountainous areas. 

 

1.3 FrAMES 

FrAMES, the Framework for Aquatic Modeling in the Earth System, is a spatially 

distributed gridded river network model that has been applied extensively at various 

spatial scales (Wollheim et al. 2008a, 2008b and Stewart et al. 2011, Vörösmarty et al. 

1998, Wisser et al. 2010, Stewart et al. 2013 and Zuidema et al. In Prep). FrAMES 

incorporates a number of dynamically linked modules that operate on a daily time step. 

These modules include the Water Balance Model (WBM),  the Water Transport Model 

(WTM) (Vörösmarty et al. 1998; Wisser et al. 2010), suburban dissolved inorganic 

nitrogen (DIN) loading (Wollheim et al. 2008b), in-stream nitrogen removal (Stewart et 

al. 2011), the Non-point Thermal Loading Model or NTLM and the River Temperature 

Re-equilibrium Model (RTRM) (Stewart et al. 2013), the Thermoelectric Power and 

Thermal Pollution Model (TP2M) (Miara et al. 2013), and the Non-point Anthropogenic 

Chloride Loading (NACL) module (Zuidema et al. In Prep). Typically, FrAMES has a 

land surface hydrology component that operates independently of forest dynamics. In this 
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study, FrAMES has been coupled with PnET to simulate the dynamic interactions among 

terrestrial and aquatic processes in the UMRW across a spectrum of land cover and 

climate projections for the region.  Here, we substitute PnET-CN predictions of runoff 

and nitrogen to load material from forests to river networks. 

 

In the PnET-FrAMES coupling, PnET-CN predicts runoff and DIN leaching from 

forests, whereas FrAMES simulates inputs of specific conductivity, thermal loads, and 

DIN loads from urban and agricultural areas. Water from the soil root zone in PnET as 

runoff is partitioned to surface and groundwater runoff generating pools in FrAMES, 

which introduce a lag in delivery to the stream network. PnET nitrogen leachate is 

applied to the daily runoff volume of the linked model. PnET does not consider riparian 

nitrogen removal, which is parameterized in FrAMES as a zero-order removal process 

that eliminates 75% of the forest leachate prior to entering the stream network.  This 

value was determined by calibration to extensive headwater concentration data 

(Appendix 3) and deserves additional investigation. FrAMES propagates discharge and 

all solute loads downstream using a cascade routing method at a daily time step. 
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Appendix 2. Model Input Data 

2.1 Simulated river network 

A simulated topological network representing the river network was derived from a 

HydroSheds digital elevation model (Lehner et al. 2008) at a 45-arc second resolution 

following Fekete et al. (2001). 

 

2.2 Contemporary climate data  

Historical climate from NASA Modern Era-Retrospective Analysis for Research and 

Applications (MERRA) was used to drive the coupled model (PnET-FrAMES) for the 

period of 1980-2014. Key drivers in the coupled model include average, minimum, and 

maximum daily air temperature, total daily precipitation, average daily cloud cover and 

average daily wind speed. MERRA data are at a spatial resolution of 1/2 degree latitude 

by 2/3 degree longitude. 

 

We adjusted MERRA air temperature to account for elevation effects, which varies from 

49 m to 1416 m in the upper Merrimack R. watershed (UMRW). We assumed a lapse rate 

of 6.4 °C per km of altitude above ground level (NOAA et al. 1976).  The elevation 

difference between the MERRA course scale datasets (1/2 by 2/3 degrees) and the 45-arc 

second river network grid was used to adjust MERRA air temperature data for altitude.  

To develop a map of high-resolution daily precipitation for the region we adjusted the 

gridded MERRA precipitation using data from between 52 and 132 stations (depending 

on year) in New England from the Global Historical Climatology Network (GHCN), 

assuming a 50% interpolation weighing factor.  
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2.3 Contemporary land cover data  

Land cover for the contemporary period (1980-2019) is based on data described in Thorn 

et al. (this issue) at 30 meter spatial resolution for the period 1996-2010. We resampled 

land cover to develop percent cover in each 45 arc-second grid cell.  PnET-CN 

distinguishes forest processes in deciduous, coniferous, and mixed categories, which 

were also acquired from Thorn et al. (this issue) which was estimated directly from the 

National Oceanic and Atmospheric Administration’s Coastal Change Analysis Program 

data.  A separate impervious cover data layer was derived from the National Land Cover 

Dataset (Xian et al. 2011).  We disaggregated developed land cover to impervious and 

lawn covers by assigning all non-impervious developed land to a lawn land cover type.  

Finally, we used the spatially distributed population estimate of Thorn et al. (this issue), 

which is needed as both a model driver (e.g., waste water and domestic chloride inputs) 

and to develop indicators (see below). 

 

2.4 Future climate scenarios 

Future climate projections used statistically downscaled climate data derived from the 

Geophysical Fluid Dynamics Laboratory CM2.1 model. Statistical downscaling from a 

native 2°×2.5° resolution to 7.5′×7.5′ was performed as described in Hayhoe et al. 

(2007). We used two scenarios bounding a range of potential future temperature and 

regional climate: lower CO2 emission (B1, 550 ppm CO2 by 2100) and higher CO2 

emission (A1FI, 970 ppm CO2 by 2100).  Air temperature were adjusted for elevation as 

described above, and precipitation was bilinearly interpolated. The downscaled global 

climate model simulations used for environmental indicators of climate used a different 
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statistical downscaling technique (Stoner et al. 2013, Wake et al. 2014) these data were 

unavailable as gridded data for our model domain. However, a check of projections at the 

specific location indicate they are consistent.  

 

2.5 Future land cover scenarios  

To demonstrate the coupled model, and to develop indicators required for the ecosystem 

services valuation (Mavrommati et al. 2017), we focus on two land cover scenarios 

expected to show the largest range in changing ES, the “Backyard Amenities” (Backyard) 

and the “Small Community with Promotion of Local Food” (Small Community Food) 

(Thorn et al. this issue). Table 1 presents key differences between these land cover 

scenarios. The Backyard land cover scenario, which prioritizes large building lots and 

incurs increased transportation related energy consumption, was paired with higher 

greenhouse gas emission (A1Fi) scenario. Conversely, the Small Community Food 

scenario reduces transportation-related energy consumption and is more consistent with 

the lower greenhouse gas emission (B1) scenario. For subsequent analyses into the 

specific roles of climate and land cover change, we consider the responses of the suite of 

land cover (Thorn et al. this issue) and emission scenarios.  

 

We simulate future drivers of terrestrial and aquatic ecosystems using projected 

impervious cover, population density, and land cover from Thorn et al. (this issue) for 

each future decade from 2020 to 2100. Land cover and population data was aggregated 

using the same methodology as for contemporary land cover. We assumed the proportion 

of each forest type remains constant in the future.  
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Table A2.1. Considered Indicators 

Considered Indicators  Domain      

  Land      

Climate Regulation        

Biofuels        

Bioproducts        

Farmland        

Forest Biodiversity        

Forest Type        

Carbon Sequestration        

Timber Stock        

Forest Cover        

  Climate      

Agricultural-Livestock        

Agricultural-Maple Syrup        

Heating + Cooling Degree Days        

Hot Days        

Snow Days        

Snowmaking Days        

Snow-clearing Impact        

Winter Road Closure Days        

Significant Precipitation Days        

Hemlock Wooly Adelgid Index        

Fall Foliage Days        

Summer Days        

Lyme Disease Risk Index        

Air Quality Impaired Days        

  Water      

Water Provision        

Shallow Ground Water Supply        

Total Water Supply        

Surface Drinking Water (DW) 

Impairment     

 

  

Shallow Ground DW Impairment        

Total DWQ Impaired        

Flood Attenuation (100-Yr)        

Flood Attenuation (50-Yr)        

Power Plant Operation Threshold        

Fish Habitat Thermal Impairment        

Riverine Environmental Flow 

Impairment     

 

  

Fish Habitat Chloride Impairment        
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Drinking Water Low Sodium 

Impairment     

 

  

Drinking Water Trace Metals 

Impairment     

 

  

Fish Habitat Nitrate Impairment        

River Habitat        

Fecal Coliform Impairment        

Dissolved Oxygen Impairment        

Coastal Health        

 

Considered indicators are sized by the round when an indicator was eliminated from 

consideration (first, second, third, final). 
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Appendix 3. Model Parameterization 

The hydrologic and biogeochemical conditions of a watershed can be significantly altered 

by land cover change. Due to the broad range in projections for population and 

impervious surfaces in the UMRW, it is essential that these potential ecosystem changes 

are accurately accounted for and simulated in the PnET-FrAMES linked model. Several 

parameterizations were made to adequately account for the changes in solute loading, and 

runoff timing and magnitude due to these land cover projections.  

 

Simulated runoff in PnET-FrAMES is parameterized to account for changes in 

watershed impervious surfaces. The linked model partitions direct and in-direct runoff 

from the fraction of total impervious areas (𝑓𝑖𝑚𝑝) via the fraction of hydrologically 

connected imperviousness parameter (𝑓ℎ𝑐𝑖). We assume during the contemporary period 

that 𝑓ℎ𝑐𝑖 = 𝑓𝑖𝑚𝑝, which is consistent with observations of hydrologic connectivity of 

impervious areas at moderate total imperviousness (𝑓𝑖𝑚𝑝 = 0.2) estimated through 

hydrologic partitioning at catchment scales in the region (Pellerin et al. 2008). This 

relationship overestimates the hydrologic connection at low values of total 

imperviousness (Alley and Veenhuis 1983, Shuster et al. 2005), which we consider 

consistent with our scales of simulation relative to such studies. In future scenarios, for 

Small Community Food we alter parameter values to account for low-impact design 

(LID), while for Backyard we assume no change. For Small Community Food, we 

assume that LID reduces effective imperviousness progressively into the future.  We 

reduce 𝑓ℎ𝑐𝑖 each future decade according to 𝑓ℎ𝑐𝑖 = 𝜅𝑓𝑖𝑚𝑝 with 𝜅 decreasing linearly from 

1.0 in 2010 to 0.1 in 2060.  In conjunction with the reduction in 𝑓ℎ𝑐𝑖, available water 
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capacity (AWC) of lawn areas is increased to accommodate an additional 25 mm of 

precipitation. This increase accounts for increased storage capacity in lawn areas due to 

LID improvements. 

 

PnET-FrAMES simulates five natural and anthropogenic sources of chloride 

through the Non-point Anthropogenic Chloride Loading (NACL) module (Zuidema et al. 

In Prep) to capture salt impairment of aquatic habitat.  Road salt (deicer) loading is the 

predominate source of chloride in the model domain. The flux of road salt to the system 

(𝑚𝐷𝐸𝐼, units) is the product of frozen (winter) precipitation (𝑃𝑤 [𝑚𝑚 𝑑−1]), fraction of 

impervious area (𝑓𝑖𝑚𝑝), fraction of treated impervious area (𝑓𝐷𝐸𝐼), cell area (A), and rate 

of road salt loading per mm of snow fall (𝐶𝐷𝐸𝐼 [𝑔 Cl 𝑚𝑚−1𝑚2] or [𝑔 Cl 𝐿−1]). The 

fraction of treated impervious area (𝑓𝐷𝐸𝐼) is an estimate of roads, sidewalks and parking 

lots that require deicing, set to 0.6 for both scenarios. The road salt loading parameter 

was estimated to be about 7 [𝑔 Cl 𝐿−1] in the Merrimack River Watershed (MRW) 

(Zuidema et al. In Review). The Backyard scenario maintains status quo road salt loading 

(𝐶𝐷𝐸𝐼 = 7.0 [𝑔 Cl 𝐿−1]), whereas the Community scenario includes an abrupt transition to 

recommended levels, to 𝐶𝐷𝐸𝐼
𝑅𝐸𝐶  = 2.5 g Cl L-1 in 2015 to simulate improved management. 

 

Inorganic nitrogen loading is a function of forest DIN loading, derived from the 

forest ecosystem model PnET (see below) and anthropogenic N loading from developed 

and agricultural lands (determined from empirical relationships in FrAMES). Suburban 

and agricultural DIN loading is parameterized according to logistic functions on the 

fraction of suburban or agricultural land and runoff depth (Wollheim et al. 2008a).  
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Patterns of DIN loading with increasing suburban area are as in Wollheim et al. (2008b), 

with maximum of 1.4 mg L-1, and xmid = 51.39 % suburban development. This function 

is nonlinear and assumes little response in DIN loading until some threshold of 

development is crossed, assuming that natural retention processes prevent losses at lower 

development. We here assume that maximum DIN loading concentration in agricultural 

land is 3.5 times higher than in suburban land (Price 2014). To simulate improved 

management in the Community scenario, maximum DIN loading concentrations from 

agricultural land is assumed to only be 2 times higher than suburban loading, assuming 

that best practices and organic agriculture called for in the scenario (Thorn et al. this 

issue) would result in a 40% reduction in agricultural DIN export.  

 

WWTPs are a significant point source of DIN load to the upper Merrimack R. 

watershed (Stewart et al. In Prep).  For the contemporary scenario, influent TN fluxes to 

WWTPs are estimated based on the population served by each plant (USEPA 2008), and 

a per capita TN emission rate (20 g TN per person per day, Van Drecht et al. 2009). Daily 

effluent masses of DIN from WWTPs to the river network were estimated based on TN 

removal efficiencies for each WWTP treatment technology (Van Drecht et al. 2009), and 

the proportion of effluent TN that is in DIN form (Dumont et al. 2005). In the Backyard 

scenario, we assume wastewater for new population is managed via septic systems 

(consistent with dispersed development) so WWTP DIN effluent remains constant 

(Stewart et al. Unpublished). In the Small Community Food scenario, we allocate all 

increased waste N from additional population growth to the nearest downstream existing 

WWTP, and increase WWTP efficiency to 90% removal of influent TN. 
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Appendix 4. Environmental indicators 

A multidisciplinary group consisting of ecologists, hydrologists, engineers, economists and 

decision scientists developed a set of potential indicators that encompass a set of climate, 

terrestrial, and aquatic ecosystem services of importance in the study region. 

 

4.1 Atmosphere domain 

Three indicators were chosen for the atmosphere/climate domain to represent primarily 

recreational and regulation ecosystem services. The three indicators were derived from 

two sources of downscaled atmospheric forcing data: 1) spatial averages of metrics 

derived from input to the coupled PnET-FrAMES model based on Hayhoe et al. (2007), 

and 2) station based estimates of down-scaled climate data (Wake et al. 2014) using the 

asynchronous down-scaling method of Stoner et al. (2013). 

 

Extreme hot days (𝐴𝐻𝑜𝑡).  The extreme hot days indicator was chosen as an indicator of 

the atmosphere’s regularization service of maintaining temperatures conducive to 

extended labor outdoors. The indicator was calculated by summing the number of days 

with maximum daily temperature (𝑇𝑀𝑎𝑥
𝑖,𝑘

) exceeding 32°C across the watershed, then 

averaging this value across the watershed. 

 

Snow days (𝐴𝑆𝑛𝑜𝑤). The snow days indicator was chosen as an indicator of the potential 

recreational opportunities from ample snow-cover provided by the atmosphere. The 

indicator was calculated by summing the number of days with a minimum of 30 𝑚𝑚 
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snowpack (𝑆𝑃𝑎𝑐𝑘
𝑖,𝑘  [𝑚𝑚 (water equivalents)]) across the watershed, then averaging this 

value across the watershed. 

 

Recreation days. The recreation days indicator was chosen as an indicator of the potential 

recreational opportunities afforded by pleasant temperatures. The indicator was 

calculated by summing the number of days with daily max temperatures (𝑇𝑚𝑎𝑥
𝑖,𝑘

) between 

21°C and 32°C, then averaging this value across the watershed. 

 

4.2 Land domain 

Three indicators were chosen for the land domain that all represent non-use and aesthetic 

value and provisioning services. 

Farm land (𝐿𝐹𝑎𝑟𝑚).  The farm land indicator was calculated directly from build-out 

scenario data including modeled agricultural land cover and total population within the 

UMRW. Farm land was expressed as the number of acres of watershed agricultural-land 

(𝐴𝐴𝑔) per resident of the UMRW (𝑃). 

 

Forest cover (𝐿𝐹𝑜𝑟𝑒𝑠𝑡).  In addition to non-use, aesthetic, and timber provisioning, total 

forest cover represents potential recreational services, is considered indicative of 

important services of [carbon sequestration] and maintenance of biodiversity. The forest 

cover indicator is calculated directly from build-out scenario data and is expressed as the 

total forest cover in acres for the UMRW. 
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Forest type (𝐿𝐹𝑜𝑟𝑇𝑦𝑝𝑒).  In addition to services provided by forest cover, the type of 

forest, particularly the proportional presence of maple/beech/birch (MBB) is considered 

important for [tourism] services. The forest type indicator represents the fraction of forest 

cover considered suitable for MBB. These were taken from New Hampshire average 

suitability index modeling for present and 2100 for low (B1) and high (A1FI) carbon 

emission scenarios (Iverson et al. 20081). 

 

4.3 Water domain 

Four indicators were chosen for the water domain that represent a diversity of ecosystem 

services. The four indicators were derived from coupled PnET-FrAMES model output 

forced using the same land cover and climate datasets used to derive indicators for 

atmosphere and land domains. The four water domain indicators were expressed in terms 

of potential stressors to relevant ecosystem services. Associated supply and demand of 

ecosystem services related to water also evolve with urbanization (Wollheim et al. 2015). 

 

Water supply (𝑊𝑆𝑢𝑝𝑝𝑙𝑦 [𝑝 𝑑]).  Water supply was chosen as an indicator of potential 

stress to human provisioning needs. Water supply represents the spatial and annual sums 

of population potentially affected (𝑃𝑆𝑢𝑝𝑝𝑙𝑦) by limited water availability, times the 

number of days per year persons were potentially affected. To calculate potentially 

affected population, we first use to calculate the daily flow accumulation (FA) (Tarboton 

et al. 2009) at each grid cell to estimate water availability for the population in the grid 

cell (𝑉). We then accumulate the downstream difference between water supply (𝑄 −

                                                        
1 http://www.nrs.fs.fed.us/atlas/ 
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𝑄𝑒𝑛𝑣) (stream flow minus environmental flow) and total human consumptive demand 

(𝑈 [𝐿 𝑑−1] = 𝑃 [𝑝] ∗ 𝑢[𝐿 𝑝−1𝑑−1]) where 𝑢 is a per capita water demand of residents in 

New Hampshire, which 284 L/p/d (Horn et al. 2008). 

𝑉 = 𝐹𝐴(max(𝑄 − 𝑄𝑒𝑛𝑣, 0) − 𝑈) 
(4.3) 

 

Affected population (𝑃𝑆𝑢𝑝𝑝𝑙𝑦
𝑖,𝑘 

) is then calculated as the maximum of local population or 

the population that is expected to have insufficient supply, except in densely populated 

cities (𝜌𝑝𝑜𝑝 > 350 𝑃 𝑘𝑚−2) where supply is assumed available elsewhere in the 

watershed. This density is consistent with areas of known public water supply systems in 

the UMRW. The demand of these areas is transmitted downstream, so the high demand 

can trigger water shortfalls in downstream cells.  

 

As formulated, 𝑊𝑆𝑢𝑝𝑝𝑙𝑦 considers both rural and urban water consumers in a simple 

consistent framework that is flexible across development patterns. The indicator assumes 

that streamflow is an appropriate indicator of water supply even where actual abstractions 

may come from groundwater resources. 

 

Flood attenuation (𝑊𝐹𝑙𝑜𝑜𝑑 [𝑝 𝑑]).  Flood attenuation was selected as an indicator of 

potential impact to human and infrastructure safety. Flood attenuation represents the 

spatial and annual sums of population potentially affected (𝑃𝐹𝑙𝑜𝑜𝑑) by local flooding, 

times the number of days per year persons were potentially affected. To calculate affected 

population, we assume that the entire population of a grid-cell (at ~1.5 km2) is potentially 

affected when daily mean discharge in the grid cell from PnET-FrAMES exceeds an 
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estimate of the 100-year flood discharge. The threshold defining flood runoff was 

spatially distributed dependent on mean April precipitation, channel slope, upstream 

wetland fraction, and catchment area following Olson et al. (2009). 

 

Fish habitat (𝑊𝐹𝑖𝑠ℎ  [𝑘𝑚]).  Fish habitat was selected as an indicator of potential non-use 

or aesthetic value, as well as recreational value of sport fishing. Fish habitat is calculated 

as the fraction of the total length of all streams and rivers in the watershed that exceed at 

least one threshold associated with either water temperature, salinity (as chloride), or in-

stream flow at least one time in each year. We use a 7-day rolling mean water 

temperature and determine when this value exceeds the median of freshwater fish 

tolerances (29.2°C) from Eaton and Scheller (1996). We use 4-day rolling mean of 

chloride to determine when it exceeds the USEPA chronic water quality criteria for 

chloride (230 𝑚𝑔 Cl 𝐿−1) (USEPA 1988). We use the 7-day rolling mean of discharge to 

determine when it is below an estimate of in-stream flow requirement equal to present 

day 7Q10, or the 10th-percentile of annual minimum 7-day rolling mean discharges. We 

estimate present-day 7Q10 in runoff as 0.122 [𝑚𝑚 𝑑−1] using USGS daily discharge 

data for 12 stations in the Merrimack River Watershed with at least 17 years of data. 

 

Nitrogen export (𝑊𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 [𝑘𝑔 N 𝑦−1]).  Nitrogen export was selected as an indicator of 

the watershed regulation service of processing excess anthropogenic dissolved inorganic 

nitrogen (DIN) prior to export to sensitive estuarine habitats.  𝑊𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 was calculated 

by subtracting an estimate of the annual estuary nitrogen loading that was determined to 

be protective of estuarine ecosystem function (�̇�𝐷𝐼𝑁
∗ = 350 [𝑘𝑔 N 𝑘𝑚−2𝑦−1], 
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Trowbridge and NHDES 2010) from the total annual export of DIN predicted by PnET-

FrAMES. 
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Figs. A4.1 – A4.4. 

Fig. A4.1. Comparison of mean daily (annual only) modeled values with observations for 

a) streamflow (mm/d), b) water temperature (degC), c) DIN (mg/L) and d) specific 

conductivity (uS/cm)  

                 ( ) 
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Fig. A4.2. Comparison of mean daily (summer only) modeled values with observations 

for a) streamflow (mm/d), b) water temperature (degC), c) DIN (mg/L) and d) specific 

conductivity (uS/cm)  

                      ( ) 
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Fig. A4.3. Basin profiles (i.e. the longest flow path distance from the basin mouth to 

headwaters) for (a) DIN (mg/L), (b) river water temperature (deg C) and (c) specific 

conductivity (uS/cm) during mean summer conditions. The black and red lines represent 

coupled model results for the Merrimack and Piscataqua Rivers, respectively.  Blue 

points show the mean and standard deviations for observations at LoVoTECS sites. The 

dotted line represents conservative mixing of DIN in a simulation without instream 

denitrification (Fig. A4.3a) 
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Fig. A4.4. Distribution of forest nitrogen load, summer water temperature and 

precipitation: a) Forest Nitrogen Load (kg/yr), b) Headwater Temperature Impaired (km 

d), c) Annual Precipitation (mm/yr), d) Summer Precipitation (mm/yr), and e) Carbon 

Sequestration (kg C yr-1 km-2) between 2075-2100 for four scenarios compared to 

contemporary range (1980-2005). (a-e) Boxes represent first to third quartiles of data 

with line defining median, whiskers extend to 1.5  IQR, outliers as circles beyond.  
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