Engineering Living Shorelines in NH: Living Shorelines 101

University of

Kirsten Howard

Coastal Resilience Coordinator New Hampshire Coastal Program

Department of Environmental Services

Dr. David Burdick Interim Director & Research Professor Jackson Estuarine Lab University of New Hampshire

New Hampshire Coastal Program DEPARTMENT OF ENVIRONMENTAL SERVICES

technical assistance convening capacity policy development federal consistency LIVING SHORELINE PROJECTS

{living shoreline}

is a term used to define a number of shoreline protection options that allow for natural coastal processes to remain through the strategic placement of plants, stone, sand fill, and other structural and organic materials.

BY THE NUMBERS

88% OF NH TIDAL SHORELINE IS NATURAL 'THE ORIGINAL LIVING SHORELINE'

Salt marshes are among our most productive and valuable ecosystems

Plants support food webs Secondary production Plant structure for habitat Support of biodiversity Protection from flooding Protection from coastal erosion

Removal of sediments & excess nutrients Aesthetic, Recreational & Educational values Self-sustaining ecosystems Long term carbon storage

Beaches and Dunes

Protection from flooding Protection from coastal erosion Aesthetic, Recreational & Educational values (tourism) Plants support food webs Secondary production (Piping Plover,

Snowy Owl, Monarch)

Plant structure for habitat Support of biodiversity Self-sustaining ecosystem (often)

Coastal Banks and Buffers

Protection from coastal erosion Support of biodiversity Aesthetic value Plants support food webs (2^{ndary} production) and habitat

Self-sustaining ecosystem (often)

From: Wilkinson Ecological Design

Naturally Eroding Banks

Support Bluff-Toe marshes Provide sediment for adjacent habitats Support mudflat food webs Woody structure for habitat Support of biodiversity ? Other ?

Ecosystem Services

Daily et al. 1997	Costanza et al. 1997	Millennium Assmnt. 2005	Zedler & Kircher 2005	Brander et al. 2006
No Particular Ecosystem	Tidal marsh & mangroves	Estuaries & marshes	Wetlands	Wetlands
not included	food production; raw materials	fiber, timber, fuel	food production; raw materials	commercial and recreational fishing & hunting; harvesting of natural materials; energy resources
maintenance of biodiversity	habitat/refugia	biodiversity	habitat/refugia	appreciation of species existence
provision of aesthetic beauty and intellectual stimulation that lift the human spirit	recreation	cultural & amenity; aesthetics; recreational	cultural; recreation	recreational activities; appreciation of uniqueness to culture/heritage
protection of coastal shores from erosion by waves.	disturbance regulation	flood/storm protection; erosion control	disturbance regulation	storm protection flood protection
protection - UV rays; climate stabilization; moderation of weather extremes & impacts.	not included	atmosphere & climate regulation	gas regulation	climate stabilization; reduced global warming
purification of air & water; detoxification & decomposition of wastes	waste treatment	waste processing	waste treatment	improved water quality; waste disposal
cycling & movement of nutrients	none	nutrient cycling & fertility	nutrient cycling	improved water quality; waste disposal

Tidal Marsh Ecosystem Services Value per Annum per Hectare

Value per Annum per Hectare

- Costanza et al. 1987: \$9,900
- In 2008 \$ (Gedan et al. 2009): \$14,400

New Services:

- Carbon sequestration (European market): \$135
- Denitrification (Piehler and Smyth 2011): \$6,128

Future Services: ...?

Atlantic silversides spawn in Spartina

1104

Estuaries and Coasts (2012) 35:1100-1109

Table 1 Menidia menidia eggs collected and mean density (eggs/m ²) by shoreline type col-	Shoreline type	Total eggs	Mean eggs (eggs per m ² per day) with SE	Percentage of total eggs collected
lected near Roosevelt Inlet, Del- aware Bay, during spring 2010.	S. alterniflora ^a	2,922,150	32,468±10,400	93.8
Significant differences denoted	P. australis ^{c,d}	94,190	1,046±1,003	3.0
by superscript letters ($p < 0.05$)	Riprap-sill ^a	49,840	553±196	1.6
Balouskus &	Riprap ^b	46,460	516±238	1.5
	Beach ^c	2,530	28±14	0.1
Targett 2012	Bulkhead ^d	4	0.04±0.04	<0.01
35'0'0 "N	Delaware Bay	b Broadkill RR-S1-B	Roosevelt inlet RR 7-8 BU 7-8	
High Intertidal 1 2 Low Intertidal C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Canary Cre	RR 1-6 SP 1-6 PH 1-8 BU 1-6 D.16 Kilometers	Canal

SHORELINE TODAY

12% total armored70% Atlantic Coast5% Great Bay

SHORELINE TOMORROW

SEA-LEVEL RISE

PROJECTIONS

0.6 – 2.0 ft. by 2050
1.6 – 6.6 ft. by 2100

HOW TO PREPARE

- **1**. Select time period
- 2. Commit to manage *intermediate high*
- 3. Adjust if necessary

Example: If the design time period is 2050-2100, commit to manage 3.9 ft. of sea-level rise, but be prepared to manage and adapt to 6.6 ft. if necessary.

www.nhcrhc.org

SHORELINE TOMORROW

NH Fish & Game 2014

95 percent of existing salt marsh could be lost with 6.6 feet of sea-level rise

www.nhcrhc.org

EROSION YESTERDAY

EROSION TODAY & TOMORROW

Erosion at Wagon Hill Farm, Durham

THE DRIVE TO STABILIZE

CT survey suggests shorefront property owners are likely to armor in next 10 years (Chris Field, UCONN)

Stabilization demand is increasing. Over 550 permits 00's

THE SALT MARSH SQUEEZE

marsh migration + stabilization = salt marsh squeeze

LIVING SHORELINE EXAMPLES FOR COASTAL COMMUNITIES

MARSH PLANTING

unsuitable in high energy environments

FIBROUS SILL

MATERIALS: native plants; coir fiber logs; sediment fill

SUITABLE LOCATIONS: low to moderate wave energy environments

PROS: protects marsh; biodegradable; can reduce slopes; provides habitat

CONS: does not last as long as a rock sill; possi habitat conversion

ROCK SILL

MATERIALS:

native plants; stone, rubble, or fibrous toe protection; sediment fill

SUITABLE LOCATIONS:

shallow depths; low boat wake; low to moderate wave energy environments

PROS: protects marsh; maintains tidal flushing; provides habitat

CONS:

 not biodegradable; can restrict navigation; possible adjacent erosion; possible habitat conversion

LIVE CRIB WALL

MATERIALS:

timber, box-like structure filled with soil or rock and live tree branches

SUITABLE LOCATIONS:

urbanized shorelines; higher wind and wave energy; mostly freshwater

PROS: highest level of erosion mana

CONS: may cause more adjacent erosion; less marsh habitat value

Liz Podowski King 2015.

LIVING SHORELINES SUPPORT RESILIENT COMMUNITIES

Living shorelines use plants or other natural elements—sometimes in combination with harder shoreline structures—to stabilize estuarine coasts, bays, and tributaries.

One square mile of salt marsh stores the carbon equivalent of 76,000 gal of gas annually.

Marshes trap sediments from tidal waters, allowing them to fisheries habitat, grow in increase elevation as sea level rises.

Living shorelines improve water quality, provide biodiversity, and promote recreation.

Marshes and oyster reefs act as natural barriers to waves. 15 ft of marsh can absorb 50% of incoming wave energy.

Living shorelines are more resilient against storms than bulkheads.

33% of shorelines in the U.S. will be hardened by 2100, decreasing fisheries habitat and biodiversity.

Hard shoreline structures like **bulkheads** prevent natural marsh migration and may create seaward erosion.

The National Centers for Coastal Ocean Science | coastalscience.noaa.gov Some graphics courtesy of the Integration and Application Network, University of Maryland Center for Environmental Science (ian.umces.edu/symbols/)

A BUSINESS OPPORTUNITY ENGINEERS ECOLOGISTS

CONTRACTORS

A FEW MORE TIDBITS ABOUT LIVING SHORELINES

20 YEARS BEHIND RIVER RESTORATION AND STABILIZATION **IN NEW HAMPSHIRE**

NOT NEW TO PERMITTING, BUT PERMITTING IS SHIFTING TO FAVOR

WE ALL WANT MORE INFO BUT NEED MORE PILOTS PROJECTS

An Introduction to Living Shorelines

University of New Hampshire COASTAL HABITAT RESTORATION TEAM

TIME FOR LUNCH!

(Living Shorelines 201 at 12:30PM)