

The living shoreline approach as an alternative to shoreline hardening:

Using science to inform coastal management policies

Coastal ecosystem services

Habitat

Tourism, Recreation, Aesthetics

Habitat Degradation & Loss

Seagrass Losses >30%

> 40% decline of North American salt marshes

Gedan and Silliman 2009

Oyster Losses – 65-85%

Waycott et al. 2009

35% of mangrove area has been lost since 1980s

Valiela et al. 2001

Beck et al. 2011

Coastal development

Coastal erosion

Causes:

- Ambient wave energy
- Storm events
- Disruption in sediment supply
- Changes in shoreline topography
- Removal of vegetation

Boat wakes

U.S. Shoreline Hardening Conclusions

- 14% of the total U.S. shoreline is hardened (~22,000 km)
- Housing density best predictor on Atlantic sheltered and Gulf coasts
- South Atlantic and Gulf coasts projected to see largest increases in coastal population

Gittman et al. 2015. Frontiers in Ecology and the Environment

What are the Ecological Effects of Shoreline Hardening?

Seawalls/Bulkheads

Riprap revetments

Breakwaters

Meta-analysis methods

Metric	Structure Type	No. Studies	No. Responses
Biodiversity	Seawall	11	20
	Riprap	8	14
	Breakwater	5	11
Abundance	Seawall	22	67
	Riprap	7	22
	Breakwater	8	36

Nekton

Flora

Epibiota

Birds

Benthic infauna

Affected flora and fauna

- Benthic infauna (e.g., Seitz et al. 2006):
 - Polychaetes, amphipods
 - Clam (Macoma balthica)

- Spotted sandpiper (Actitis macularius)
- Sanderling (Calidris alba)
- Willet (Tringa semipalmata)
- Killdeer (Charadrius vociferus)

- Blue crabs (Callinectes sapidus)
- Mummichogs (Fundulus heteroclitus)
- Penaeid shrimp
- Spot (*Leiostomus xanthurus*)

Shoreline hardening

Fig. courtesy T. Jordan

Changes occur **BELOW** the MHW line:

- Sediment transport & particle-size change
- Vegetation loss
- Benthic Fauna, Birds, Fish abundance reduced
- Denitrification capacity reduced

..and have negative impact on public trust resources

What are the alternatives?

Living shorelines "A living shoreline incorporates vegetation or other 'soft' elements alone or in combination with some type of harder shoreline structure (e.g. oyster reefs or rock sills) for added stability. Living shorelines maintain continuity of the natural land - water continuum and reduce erosion while providing habitat value and enhancing coastal resiliency. (NOAA 2015).

Comparison of marshes with and without sills

Gittman et al. 2016 Ecological Applications

Habitat provision conclusions

Living shorelines can serve as better habitat than bulkheads

 Sills may function similar to oyster reefs in terms of providing refuge and foraging opportunities

Shoreline Resilience

Post-hurricane survey results

Shoreline Comparison

Α 0.4 • = Sill o = Control 0.3 Elevation (m NAVD88) 0.2 0.1 0.0 -0.1 -0.2 В 600 Vegetation density (stems per m²) 500 400 300 200 100 2010 /\2011 2012 Hurricane Irene

Gittman et al. 2014 Ocean & Coastal Management

Shoreline resilience

Shoreline resilience

Which factors are the most powerful at predicting homeowner's current shoreline condition?

Classification Tree Analysis

Current Condition

Model Inputs

Geographic Zone

Perceived Environmental
Condition
Priorities
Years at Current Residence
Years Residing on Mobile Bay
Adjacent Shoreline Condition
Age
Education
Income

Which factors are the most powerful at predicting homeowner's current shoreline condition?

Which factors are the most powerful at predicting homeowner's <u>current preference</u>?

Which factors are the most powerful at predicting homeowner's <u>current preference</u>?

Acknowledgements

Coauthors John Bruno Carolyn Currin Joel Fodrie Jon Grabowski Danielle Keller Isabelle Neylan Pete Peterson Michael Piehler Alyssa Popowich **Steven Scyphers Carter Smith**

Technicians, grad students, agency staff, volunteers, and many more!

