Sea Level Affecting Marshes Model (SLAMM) for NH

Goal: to guide conservation strategies that will protect coastal wetland areas that are likely to provide high quality wildlife habitat and persist for the longest duration.

Coastal New Hampshire

Massachusetts

Ecological Services

Wildlife habitat

Natural storm surge buffers

Water filtration

Wetlanddependent human activities

Sea Level Affecting Marshes Model (SLAMM) for NH

What is SLAMM?

Model Process Overview

 Simulates the dominant processes involved in wetland conversions under different scenarios of sea level rise *inundation, erosion, accretion, soil saturation and barrier island overwash*

SLAMM tracks the rise of water levels and the salt boundary by reducing the elevation of each cell, as sea levels rise.

SLAMM Inundation Model

(Migration of Wetlands Boundaries due to Sea Level Rise)

SLAMM Habitats

Fate of Wetland Cells Adjust cell elevation based on SLR, Accretion, Uplift / Subsidence Determine if cell has fallen below minimum elevation If cell is in defined estuary, determine type based on salinity If cell is exposed to water and meets maximum fetch, erode cell

SLAMM software interface

💽 SLAMM v6.2 beta C:\Avdata\SL	AMM\Data\AreaF\AreaF.SLAMM6		K
File Help			
Load Simulation	Save Simulation	Save As New Simulation	
SLAMM Simulation Name			
AREA F			
Description			
Great Bay			
<u>E</u> xecute	Set <u>M</u> ap Attributes	For Sites with Salt-Wedge Estuaries	
File Setup		Freshwater Flow Parameters	
	Initial Map Zoom:	Salinity Analysis	
Site <u>P</u> arameters	100% 🔻		
Elev. Statistics			

Spring 2013 SLAMM 6.2 released 64bit version

SLR scenarios to Run PCC, 2001 or Fixed Scenarios Estimates A1B Min A1T	and/or Fixed Rise by 2100	Protection Scenarios to Run Don't Protect Protect Developed Dry Land Protect All Dry Land	1
Alf1 Mean	 1 meter 1.5 meters 	Run Model for NWI Photo Date (TO)
☐ B1 ☐ B2 ☑ Cu	stom 1.2 m by 2100	Time Step (years) 25	
		Run Model for Specific Years	
Display Maps on screen		2025,2050,2075,2100	
✓ Pause with Examination	Tools	e.g. 2050,2075,2100	
 Automatically Paste Map Save Maps to GIF Files Also Save Salinity, Accre Additional Simplified Cat No Maps (Quicker Exect 	os to Word etion Maps regory Maps ution)	Data to Save Save Tabular Data Only Save Output for GIS GIS File ()ption
 □ Include Dikes ☑ Use Soil Saturation ☑ Use Bruun Rule for "Ocean 	Data Elevs Loaded as Blanks se Connectivity Algorithm Beach'' Erosion	Run Latin-Hypercube Analysis Run Sensitivity Analysis Uncertainty / Sensitivity	Setur

NH Planning Scenarios

New Hampshire Coastal Risks & Hazards Commission

Home	About	Meetings	Committees	Working Groups	CRHC Reports	Resour	ces	StormSmart Coasts
Archive	Scien	tific Advis	ory Panel			۶	Sig	n up for updates!
							You	r email:
The S	Scien	tific Ad	dvisory	Panel will	meet on		En	ter email address
Marc	h 17.		-					
by Cathy Co	oletti on Marc	ch 13, 2014 in M	eeting Announcen	nents, Scientific Adviso	ry Panel			Sudscribe
The Scier	ntific Advis	ory Panel Mee	eting of the N.H.	Coastal Risks and H	lazards Commissio	on will	Тор	bics
meet on M	/larch 17 fr	rom 10:30am-	12:00pm at 320	Gregg Hall at the Ur	iversity of New Har	npshire		
in Durhan	n, N.H. Vie	ew the agenda	a.				• G	rant Proposal
							• M	eeting Announcements
Continue R	leading 🗩 0)					• S	cientific Advisory Panel

- Steering Committee
- Uncategorized
- Working Groups

NH Planning Scenarios

SLR at 2100

Temporal Scale

0.5m (1.7ft), 1.2m (3.9ft), 2m (6.3ft)

2025, 2050, 2075, 2100

Locally relevant input parameters

Parameter	Global
Description	GreatBay
NWI Photo Date (YYYY)	2001
DEM Date (YYYY)	2011
Direction Offshore [n,s,e,w]	East
Historic Trend (mm/yr)	1.76
MTL-NAVD88 (m)	0.067
GT Great Diurnal Tide Range (m)	2.3
Salt Elev. (m above MTL)	1.61
Marsh Erosion (horz. m /yr)	1.8
Swamp Erosion (horz. m /yr)	1
T.Flat Erosion (horz. m /yr)	0.5
RegFlood Marsh Accr (mm/yr)	4.3
IrregFlood Marsh Accr (mm/yr)	4.3
Tidal-Fresh Marsh Accr (mm/yr)	5.38
Inland-Fresh Marsh Accr (mm/yr)	0
Mangrove Accr (mm/yr)	7
Tidal Swamp Accr (mm/yr)	1.1
Swamp Accretion (mm/yr)	0.3
Beach Sed. Rate (mm/yr)	0.5
Freq. Overwash (years)	50
Use Elev Pre-processor [True,False]	FALSE

Currently the closest active tide station is located at Fort Point, with the next closest located within Wells NERR (Figure 2b). The station at Fort Point was established in 1976, with the present installation operating since 2003. It measures primary water level only. The station at Wells NERR was established in 1999. It measures primary and backup water level, barometric pressure, conductivity and wind, air and water temperature.

Figure 2a. Location of historic tide stations in the Great Bay region. (CO-OPS map)

Figure 2b. Location of current tide stations in New Hampshire and southern Maine. (CO-OPS map)

Center for Coastal and Ocean Mapping / NOAA-UNH Joint Hydrographic Center

A Tidal Study

Great Bay, New Hampshire

		Chankhaggig	Winnicut	Adam′s	Squamscott	
		Shankhassic,	River,	Point,	River,	
			Great Bay,NH	Great Bay,NH	Great Bay,NH	
Datum:	MHHW (m)	1.012	1.016	0.868	1.119	
	MHW (m)	0.899	0.895	0.753	1.005	
	MTL (m)	0.072	0.143	-0.083	0.134	
	DTL (m)	0.047	0.096	-0.106	0.106	
	MSL (m)	0.043	0.012	-0.112	0.071	
	MLW (m)	-1.113	-0.987	-1.242	-1.080	
	MLLW (m)	-1.176	-1.013	-1.311	-1.141	
Range of						
Tide:	Gt (m)	2.300	2.066	2.212	2.304	
	Mn (m)	2.083	1.889	2.012	2.094	
	DHQ (m)	0.112	0.121	0.114	0.114	
	DLQ (m)	0.063	0.026	0.070	0.062	
Lunitidal						
Interval:	HWI (hrs)	5.85	5.87	5.79	5.90	
	LWI (hrs)	12.15	12.55	12.03	12.34	

SLAMM File Setup	4 C 10000 10 14 / 2 - 2 - 5 20 47 8	-8 Z
DEM File (elevation): (required)	C:\Avdata\SLAMM\Data\AreaF\dem.asc LiDAR 2m dem NRows: 4500, NCols: 6000.	Browse
SLAMM Categories (NWI): (required)	C:\Avdata\SLAMM\Data\AreaF\nwi.asc NWI with RPC Land Use (dev/undev) NRows: 4500, NCols: 6000.	Browse
SLOPE File: (required)	C:\Avdata\SLAMM\Data\AreaF\slope.asc slope (degrees) from LiDAR dem NRows: 4500, NCols: 6000.	Browse
Dike File: (optional)	C:\Avdata\SLAMM\Data\AreaF\dike.asc from NW/ "h" modifier NRows: 4500, NCols: 6000.	Browse
	Classic dike raster (protected areas) C Dike location raster (dike locations and height)	
Pct Impervious File:		Browco
(optional)	NRows: 4500, NCols: 6000. Ift photos (spring, leaf-off CIR)	Diowse
Raster Output Sites File: (optional)	No Raster Output File Selected, outputs will not be summarized by raster coverage	Browse
VDATUM File: (optional)	No VDATUM Correction File Selected, using MTL-NAVD corrections in site/subsite records.	Browse
Uplift, Subidence File: (optional)	No Raster Uplift/Subsidence Map Selected, using Historic Trend to estimate land movement.	Browse
Salinity Raster File (base): (optional)	No Salinity Paster File Selected The initial condition file should be specified here	Browse
	Re-check Files' Validity	
Base Output File Name:	C:\Avdata\SLAMM\Data\AreaF\GreatBay.asc	Browse
C Track All Cell	s Cells to Track: 27,000,000 Count s Memory Utilization in GB: 2.3888424 ("Blank'	
C Do not Track	High Elevations and Open Water	<u>o</u> k

SLAMM Data inputs

LiDAR based on 2011 data collection

2-meter digital elevation model (dem)

SLAMM Data inputs – National Wetlands Inventory (NWI)

and a second						
Hampton- Seabrook	Direct coast line	Harbor entrance	Piscataqua River	Little Bay	Great Bay	Tributaries
1986	1986, northern tip 2001-2004	2001-2004	2001-2004	2001-2004	Half 2001- 2004, half 1986	Both 1986 and 2001- 2004

Results

Mapping products

Mapping products

🔺 🏴 💸 🛱 all 🏟

4:52 PM

Mapping products

12/1/2014

Mapping products

🔺 🖿 🍀 🛱 🖬 🕪

4:54 PM

What is the Coastal Viewer?

19 20

25 26

24

30

The Coastal Viewer is an online mapping tool that brings coastal resources spatial data, hazards-related spatial data, and other spatial data sets within NH's 42 coastal watershed communities together in one place. Users can search for available data sets; display the data sets in multiple ways; and create, print, and share customized maps. Overall, the goals of the Coastal Viewer are to serve as a one-stop shop for all coastal resources and hazards-related spatial data in NH's coastal watershed; to improve access to new and existing spatial data sets; and to provide information about coastal resources, hazards, and opportunities to reduce risk from these hazards and increase coastal resiliency.

The Coastal Viewer was developed by NH GRANIT as part of the Resilient NH Coasts project, which was

Lon:

Show Layers

Cons Models don't make decisions NWI data (update) Tidal connection LiDAR in marshes wider accuracy interval than on upland

Pros

Simple to use & free NH's data resolution Vehicle for planning discussion

Next Steps

Current status

Mapping products (quantitative to come)
 Uncertainty Analysis (site specific)

2025

GREAT BAY ESTUARINE RESEARCH RESERVE ONAL

2100

Salt marsh persistent

Salt marsh potential

Model prediction uncertainties

 SLAMM predictions are always affected by uncertainties

Inputs affected by uncertainty and data errors:

- Sea Level Rise
- Uplift / Subsidence
- Tide ranges
- Height of salt-water
- Overwash Parameters

- Elevations
 - LiDAR and NAVD88 Corr.
- Accretion Rates
 - Extent of Feedbacks
- Erosion Rates

 Therefore, there is not one prediction that is right, but rather a distribution of possible future wetland coverages

Current status

Mapping products (quantitative to come)
 Uncertainty Analysis (site specific)

✓ Restoration opportunities

Restoration Opportunities

(SLR 2m / 7ft)

Restoration – Taylor River

Habitat Type

SLR 2m / 7ft

Tidal restriction in place

Tidal restriction removed

Current status

- ✓ Mapping products (quantitative to come)
 - ✓ Uncertainty Analysis (site specific)

- ✓ Restoration opportunities
- ✓ Habitat quality and adaptation potential

Habitat Condition and Adaptation Potential

Salt Marsh Integrity Assessment Program in USFWS Region 5

SusanC. Adamowicz; Neckles, Hilary; Guntenspergen, Glenn; Shriver, Greg; Taylor, Jan

- Landscape scale components of SMI
- Natural Heritage data & bird species richness
- Potential to migrate inland (proximity to low lying undeveloped land)

Current status

Mapping products (quantitative to come)
 Uncertainty Analysis (site specific)

- ✓ Restoration opportunities
- ✓ Habitat quality and adaptation potential
- Priority lands for conservation (field verified)

High / low marsh boundary

Next Steps?

 Integrating local fine scale resolution data (e.g. NH Coastal Program's and GBNERR's salt marsh mapping data) into NWI format

- Explore opportunities to enhance knowledge of relative tide level relationships throughout the entire system
- Salt marsh conservation and restoration opportunities workshop

July 30th 9:00-Noon

Contact:

Rachel Stevens, GBNERR Stewardship Coordinator and Wildlife Ecologist

www.greatbay.org