Climate Risk in the Seacoast (C-RiSe): Stream Crossing Assessment UNH Stormwater Center Final Report

Prepared by:

Joel Ballestero Tom Ballestero, P.E.

March 2017

This project was funded, in part, by NOAA's Office for Coastal Management under the Coastal Zone Management Act in conjunction with the NH Department of Environmental Services Coastal Program.

Contents

Introduction
Methods
Data Collection
Hydrology3
Hydraulics and Hydraulic Ratings4
Aquatic Organism Passage5
Geomorphic Compatibility6
Culvert Assessment Model7
Results7
Hydraulic Ratings8
Aquatic Organism Passage Ratings9
Geomorphic Compatibility Ratings10
Map Image Icons11
Discussion12
Appendix1

Introduction

The Climate Risk in the Seacoast (C-RiSe) vulnerability assessment produced maps and quantitative assessments of sea-level rise and storm-related flooding impacts to key public assets and natural resources for the ten tidally-influenced municipalities surrounding New Hampshire's Great Bay Estuary (i.e., Durham, Dover, Exeter, Greenland, Madbury, Newfields, Newington, Newmarket, Rollinsford, and Stratham). As part of the C-RiSe project, the UNH Stormwater Center assessed the hydraulic capacity, aquatic organism passage (AOP), and geomorphic compatibility (GC) at various flows for a subset of existing road stream crossings (culverts) selected by the ten Great Bay municipalities. The UNH Stormwater Center developed an Excel model to perform these three assessments in batch mode (one or more culverts at once). Results from the hydrologic and hydraulic modeling are publicly available through the <u>New Hampshire Coastal Viewer</u>.

A total of 105 stream crossing locations were identified by the ten communities. Each site was then surveyed and all the field data collected in order to run all the assessments. The field data collection subscribed to common New Hampshire Department of Environmental Services (NHDES) practices and methods. In addition to the field data, all online data was obtained running scripts in GIS for each crossing location. Using the online data, peak flows at return periods of 2-, 10-, 25-, 50-, and 100-yrs were calculated at each site. These, along with site specific field data, were then input into spreadsheets that determined ratings for AOP and GC, as well as into the Federal Highway Administration's (FHWA) free hydraulic program HY-8, to calculate headwater depths. Using input from the C-RiSe technical advisory committee (TAC), the headwater depths were then used to determine hydraulic ratings at each crossing for each of the five peak flows.

Built upon the published documentation on HY-8, the formulas used in the program as well as the methods defined in the FHWA's Hydraulic Design Series #5 (HDS5, which provides the technical basis for HY-8), and the NH state protocols for assessing culverts for AOP and GC, an Excel model was created and coded. This model requires relatively little information, performs all the calculations, and rates stream crossings for the three assessments. The model is thus intended to be used to run the assessments for multiple crossings at one time, and yields coarse screening results for each culvert and simple results viewing.

In addition to creating the model, the UNH Stormwater Center developed a <u>User's Manual</u>, which thoroughly details the methods and calculations behind the model, as well as instructions for use and interpreting results.

Methods

Three assessments for culvert performance were performed as part of the C-RiSe project: hydraulics, aquatic organism passage (AOP), and geomorphic compatibility (GC). Together, the three may be used as a screening tool to determine the overall 'adequacy' of a crossing. New Hampshire has protocols for assessing culverts for AOP and GC, but not yet for hydraulics. To rate crossings for AOP and GC, the state's protocols were employed and coded into the Excel model. In order to rate crossings for hydraulics, a method had to be determined, and was agreed upon after discussions with the technical advisory committee (TAC) assembled at the start of the project.

Data Collection

After all ten communities provided a total of 105 crossings to be assessed as part of this project, each site was visited and had field data collected. The data collected followed the state's Culvert Assessment Protocol, plus additional, required information pertaining to the hydraulics. Data collection at each site was performed using a laser level for relative elevations, tape measures for dimensions, and observationally for other data. Coordinates were observed using GPS receivers, which then provided the exact location of each crossing for use in obtaining watershed characteristics from online data sources.

The field data for each of the crossing locations was then sent to the UNH Institute for the Study of Earth, Oceans, and Space (UNH EOS). Using scripts in GIS software and the crossing locations, all the required watershed and hydrologic data was obtained by EOS.

Hydrology

Using the watershed properties and hydrologic data collected from online sources for each crossing as well as the EOS results, five peak flows (2-, 10-, 25-, 50-, and 100-yr flows) were calculated for each stream crossing using two commonly used, widely published methods: The SCS Curve Number method, and the USGS Regression Equations for New Hampshire. Documentation states that the Curve Number method is applicable for watersheds up to about 2 square miles in size. The Regression Equations were calibrated to watersheds in NH down to 0.7 square miles in size. Therefore, coded within the Excel model, and for the purpose of this project, peak flows for stream crossings possessing watersheds equal to or smaller than 1 square mile were calculated using the Curve Number method, and for watersheds larger than one square mile the Regression Equations were used.

Hydraulics and Hydraulic Ratings

After many discussions with members of the TAC, both as a group and individually, a method was agreed upon to generate a hydraulic rating for each stream crossing. For each of the five flood flows calculated at each site (2-, 10-, 25-, 50-, and 100-yr flows), headwater depths at the inlet of each crossing was computed via HY-8 and the Excel model. These headwater depths were compared to physical metrics at each crossing in order to provide an estimate of how each crossing performed at passing flows. It was decided that there were two thresholds at which crossings may reach a critical stage in terms of hydraulic rating: when headwater depths reached the top of the culvert, and when headwater depths reached the lowest point of the road surface. When depths reach the top of the culvert, it can be assumed that the culvert is flowing nearly full, and likely at much higher than normal stream velocities. Once the headwater stage reaches the road (or similar) overtopping occurs. Overtopping flows can: lead to road embankment failure and subsequent damage to infrastructure; cause flooding upstream; and present hazards to transportation. Thus, these two stages for headwater represent a simple ability to rate the crossing and view the results in a quick manner.

For any given flow at any specific culvert, flow control occurs as either inlet control or outlet control. Inlet control means that the inlet is throttling the flow through the culvert and therefore determines the headwater depth. Outlet control means that the culvert barrel, outlet, and tailwater control the flow and therefore the headwater depth. Inlet and outlet control headwater depths are computed for each flow, and the larger of the two is the controlling condition for headwater depth. The hydraulics (headwater depths) for this project were all performed using the software HY-8. This software is built using the methods and equations defined in HDS5. However, since HDS5 was written for more traditional hand calculations, HY-8 takes the empirical formulas used to calculate inlet control headwater depths to the data to use. The coefficients for all the variable culvert configurations differ from one to the next. These equations and coefficients are coded into the Excel model. Additionally, HY-8 computes outlet control. Similar methods were coded into the Excel model.

With the headwater depths calculated at each crossing for each of the five peak flows, the ratings were determined as Pass (below the top of the culvert; colored green), Fail (at or above the road surface; colored red), or Transitional (between those two stages; colored yellow) as shown in Figure 1.

Figure 1. Hydraulic Rating Scheme

Aquatic Organism Passage

New Hampshire has a screening protocol for rating stream crossings for AOP. The screening tool and procedure was borrowed directly from Vermont, and uses physical characteristics of the culvert and site to estimate culvert passability. This screening protocol is built into the Excel model as defined in the documentation provided by the state. The AOP ratings are: Full AOP (colored green), Reduced AOP (colored gray), No AOP – Adult Salmonids (colored orange), and No AOP (colored red). A description of the four ratings is provided in Table 1.

Table 1. Aquatic Organism Passage Ratings			
Full AOP	Crossing likely is fully passable by all aquatic organisms		
Reduced AOP	Crossing likely has reduced passage capability by all aquatic organisms		
No AOP - Adult Salmonids	Crossing likely is not passable by all aquatic organisms except for adult salmonids		
No AOP	Crossing is likely impassable by all aquatic organisms including adult salmonids		

Geomorphic Compatibility

Similar to AOP, New Hampshire has a screening tool for rating crossings for their geomorphic compatibility (passing sediments and debris), which was adopted directly from Vermont. This method also uses physical characteristics, as well as observational details, of the culvert and of the watercourse. Five categories are scored with a score of 1-5, and the sum of the five scores yields a total score, which is then used to determine the rating. This screening tool was built into the Excel model as well, following the documentation outlining the method. Using the screen, crossings are rated as: Fully Compatible (colored neon green), Mostly Compatible (colored pea green), Partially Compatible (colored yellow), Mostly Incompatible (colored orange), and Fully Incompatible (colored red). A description of each of the GC ratings is provided in Table 2.

Table 2. Geomorphic Compatibility Ratings			
Fully Compatible	20 < Score ≤ 25	Structure fully compatible with natural channel form and process. There is a low risk of failure. No replacement anticipated over the lifetime of the structure. A similar structure is recommended when replacement is needed.	
Mostly Compatible	15 < Score ≤ 20	Structure mostly compatible with current channel form and process. There is a low risk of failure. No replacement anticipated over the lifetime of the structure. Minor design adjustments recommended when replacement is needed to make fully compatible	
Partially Compatible	10 < Score ≤ 15	Structure compatible with either current form or process, but not both. Compatibility likely short-term. There is a moderate risk of structure failure and replacement may be needed. Re-design suggested to improve geomorphic compatibility.	
Mostly Incompatible	5 < Score ≤ 10	Structure mostly incompatible with current form and process with a moderate to high risk of structure failure. Re-design and replacement planning should be initiated to improve geomorphic compatibility.	
Fully Incompatible	0 ≤ Score ≤ 5	Structure fully incompatible with channel and high risk of failure. Re-design and replacement should be performed as soon as possible to improve geomorphic compatibility	

Culvert Assessment Model

While there are the two individual screening tools published by NHDES for AOP and GC, and many methods, equations, and software programs to calculate culvert hydraulics, there is not a good source for determining all of these ratings for multiple crossings simultaneously. Such a screening tool would generate a more complete picture of culvert adequacy or suitability. One of the goals of the C-RiSe project was to create such a model. Using a relatively minor amount of data input – some of which can be obtained offline, and the rest collected in the field – this spreadsheet model is able to calculate hydrology and hydraulics, and determine each of the three assessment ratings, yielding easy-to-interpret color-coded results. The results may then be compared spatially, by grouping crossings on aerial images, or by viewing the results by town (or hydrologic region, county, road, etc.). Crossings with many red ratings may easily be interpreted as being very inadequate compared to those receiving mostly green ratings. This makes viewing and analyzing many crossings at once much more straightforward and streamlined. While many more detailed ways exist to assess crossings for each of the ratings, the amount of time to do so increases greatly. This model is meant to be easy to use, and provide a coarse screen for crossing adequacy.

The hydraulic model developed for this project uses the polynomial equations and coefficients defined in the HY-8 documentation to calculate headwater depths due to inlet control. It also uses the input and methods defined in the screening tools for AOP and GC. Hydrology is calculated using the SCS Curve Number method or the USGS Regression Equations for New Hampshire. The model contains tabs for Instructions and Information, followed by input tabs for General Input (location information) Hydrology, Hydraulics, Tailwater Control, AOP, and GC. Hidden tabs then contain reference tables of values, as well as calculation tabs for each of the methods. Finally, the model has tabs displaying the Ratings, Results, and Statistics. The <u>User's Manual</u> presents thorough explanation of all the model components, input, interface, calculations, and results.

Results

With all three assessments performed for all 105 crossings across the 10 communities, hydraulic, AOP, and GC ratings were determined for each culvert. A full table of the crossing locations by ID number and a summary table of culvert ratings are provided in the Appendix.

The total number of assessed in each of the participating C-RiSe communities is provided in Table 3. Of note, the town of Newfields actually selected 11 total crossings, however one was a massive bridge span (Route 108 over the Squamscott River), and it was deemed inapplicable to the scope of this project.

Table 3. Number of Crossings by Town			
Town	# Crossings		
Rollinsford	6		
Dover	12		
Madbury	9		
Durham	10		
Newington	10		
Newmarket	12		
Newfields	10		
Greenland	11		
Stratham	10		
Exeter	15		
Total:	105		

Hydraulic Ratings

Of the crossings analyzed, the ratings were nearly split three ways at the 10-yr peak flows, but declined quickly towards the higher peak flows. At the hundred-year event, nearly two-thirds of the crossings are rated as failing. A summary of the crossing hydraulic ratings by return periods is provided in Table 4.

Table 4. Number of Crossing Ratings by Return Period						
Rating 10-yr 25-yr 50-yr 100-yr						
Pass	38	28	23	16		
Transitional	34	30	28	22		
Fail	33	47	54	67		

each town.							
	Table 5. :	10-yr Ra	atings by Towr	า		Table 6.	2
	Town	Pass	Transitional	Fail		Town	
	Rollinsford	3	2	1		Rollinsford	
	Dover	4	5	3		Dover	

The following four tables (Tables 5, 6, 7, and 8) show total crossings by hydraulic ratings for each town.

Iown	Pass	Iransitional	Fail
Rollinsford	3	2	1
Dover	4	5	3
Madbury	3	3	3
Durham	0	2	8
Newington	5	3	2
Newmarket	5	4	3
Newfields	7	2	1
Greenland	3	5	3
Stratham	5	2	3
Exeter	3	6	6

Table 6. 25-yr Ratings by Town				
Town	Pass	Transitional	Fail	
Rollinsford	2	2	2	
Dover	4	4	4	
Madbury	3	2	4	
Durham	0	1	9	
Newington	5	1	4	
Newmarket	1	7	4	
Newfields	6	2	2	
Greenland	3	3	5	
Stratham	2	5	3	
Exeter	2	3	10	

Table 7. 50-yr Ratings by Town				
Town	Pass	Transitional	Fail	
Rollinsford	2	1	3	
Dover	2	6	4	
Madbury	3	1	5	
Durham	0	1	9	
Newington	4	2	4	
Newmarket	1	7	4	
Newfields	4	2	4	
Greenland	3	2	6	
Stratham	2	4	4	
Exeter	2	2	11	

Table 8. 100-yr Ratings by Town				
Town	Pass	Transitional	Fail	
Rollinsford	1	1	4	
Dover	1	4	7	
Madbury	3	0	6	
Durham	0	1	9	
Newington	3	3	4	
Newmarket	1	4	7	
Newfields	1	4	5	
Greenland	2	2	7	
Stratham	2	1	7	
Exeter	2	2	11	

Aquatic Organism Passage Ratings

AOP ratings for the 105 crossings appear to be fairly ambiguous, with over two-thirds of the crossings having a rating of Reduced AOP. This is not unique, however, as published results from both New Hampshire and Vermont show that a rating of Reduced AOP is more common than others, followed by No AOP. All crossings contained within this project were rated for AOP, despite many having properties that would normally cause them to be unrated. Examples of such are bridges (always considered passable), tidal crossings (same), and any culvert considered a 'drainage culvert,' among other reasons. However, in order to provide ratings consistently for this project, the ratings for AOP were calculated and estimated in the most appropriate manner possible. The total number of crossings by AOP rating, and the percent of the total amount for each may be found in Table 9. To further break down the AOP ratings, the total crossings by AOP rating for each town are shown in Table 10.

Table 9. Total Crossings by AOP Rating						
Units	Full AOP	Reduced AOP	No AOP*	No AOP		
Quantity	13	72	1	19		
Percentage	12.4%	68.6%	1.0%	18.1%		
* No AOP for all species except Adult Salmonids						
No AOP for any species, including Adult Salmonids						

Table 10. AOP Ratings by Town						
Town	Full AOP	Reduced AOP	No AOP*	No AOP		
Rollinsford	1	3	0	2		
Dover	2	8	0	2		
Madbury	0	6	1	2		
Durham	2	6	0	2		
Newington	1	7	0	2		
Newmarket	2	8	0	2		
Newfields	2	6	0	2		
Greenland	0	9	0	2		
Stratham	1	7	0	2		
Exeter	2	12	0	1		

Geomorphic Compatibility Ratings

All the crossings given as part of this project were rated for GC, despite many possessing properties that would normally cause them to be unrated. Due to the rating scoring scheme, select properties of the culverts themselves, as well as the watercourse, must be present in order for GC to be properly scored. However, for consistency, the GC ratings were calculated for all the sites within this project to the most appropriate degree possible. A majority (80%) of the crossings scored reasonably well – almost a near split between Mostly Compatible and Partially Compatible – and over 90% of crossings were rated between Mostly Incompatible and Mostly Compatible. This again, may seem ambiguous or skewed, however it follows the trend observed by the Vermont Department of Environmental Conservation, published as part of their Screening Tool Documentation. The total number of crossings per GC rating is shown in Table 11.

Table 11. Overall GC Ratings									
Total By	Fully Compatible	Mostly Compatible	Partially Compatible	Mostly Incompatible	Fully Incompatible				
Quantity	7	44	40	14	0				
Percentage	7%	42%	38%	13%	0%				

Again, the GC ratings may be broken down by town. While there are not many towns with multiple crossings that are rated as Fully Compatible; there are also no crossings rated as Fully Incompatible for any of the towns. The GC ratings by town is shown in Table 12.

Table 12. GC Ratings by Town								
Town	Fully Compatible	Mostly Compatible	Partially Compatible	Mostly Incompatible	Fully Incompatible			
Rollinsford	0	1	5	0	0			
Dover	0	6	3	3	0			
Madbury	0	3	4	2	0			
Durham	1	4	5	0	0			
Newington	1	4	2	3	0			
Newmarket	1	7	3	1	0			
Newfields	1	5	3	1	0			
Greenland	0	3	6	2	0			
Stratham	2	1	6	1	0			
Exeter	1	10	3	1	0			

Map Image Icons

In addition to having the ratings calculated and shown in the model, using colored cells to highlight each rating, these ratings have been placed onto aerial maps for each town, as well as uploaded to the New Hampshire Statewide Asset Data Exchange System (SADES) database and the NH Coastal Viewer. Since the state had previously defined protocol and assessment procedures for rating crossings for GC and AOP, their existing map symbols were used for those two ratings. These two appear on maps as dots, colored in the same manner as displayed in the model and in this report.

Figure 2. Hydraulic Rating Key

something new to the assessment scheme, and having no prior inclusion online, a symbol was determined in an attempt to display the hydraulic ratings in a meaningful and quick manner. Following the same scheme as for the AOP and GC ratings, a circle was used. This circle is divided into four quadrants, and each quadrant is colored according to the rating (green for pass, yellow for transitional, red for fail). The quadrants represent the 10-yr rating in the upper

Since the hydraulic ratings are

left quadrant, the 25-yr rating in the upper right quadrant, the 50-yr rating in the lower left quadrant, and the 100-yr rating in the lower right quadrant. This shows the four most applicable ratings in one simple symbol. A sample image of the symbol is shown in Figure 2. These results have all been presented to the towns and may be viewed online on the <u>New</u> <u>Hampshire Coastal Viewer</u>.

Discussion

Overall, the crossings analyzed as part of this project performed poorly across the board, due to many factors. First, the towns were asked to provide anywhere from 5 to 15 "problem" culverts they wished to have analyzed. The crossings provided were of concern to the towns, and are likely to have known problems, or are of special interest. Since new, highly functional crossings are usually not in need of analysis or repair, the town-supplied crossings were expected to perform poorly. Also, in performing hydrologic calculations as part of this project, the most current precipitation data was used, which reflects increased precipitation amounts manifested in recent years. These values are likely larger than those used during the design of many of the culverts (assuming that most are likely older culverts, and not new ones). In addition to the larger flows calculated for each site, the hydrology is calculated without any regard for upstream storage – both in the form of upstream impoundments, and considering storage routing at each site (where the stream crossing acts as an impoundment, the road as the overflow weir, and the culvert as the outlet). There are also a few special cases where crossings are influenced by tidal flows - either as a tidal crossing themselves, or immediately upstream of the Mean High High Water (MHHW) elevation. Even fewer, but still occurring, are cases where crossings are influenced downstream by flood stages in larger rivers. In both cases, the hydraulics were calculated using worst-case scenarios, which may not be likely, but would account for a more critical situation rating.

While the previously mentioned situations apply mostly to hydraulics, special considerations exist for the AOP ratings and GC ratings. For both assessments, many crossings contained within this project would be considered not applicable to one or both of the assessments, as per the protocol for each. Both assessments were performed as part of this project for all the crossings, but the ratings for AOP and GC should be considered with caution.

Crossings that are tidal, or are bridges are not considered for AOP, as both are considered to have a Full AOP rating. Crossings that are over ephemeral or intermittent watercourses are also not considered, as to fully run the assessment, the data is required to be taken during a period of low-flow.

The GC assessment includes five scores for measurable data and observational properties of the stream crossing and the watercourse it passes. The sum of these individual scores gives an overall score, which is then used to determine the GC rating. Any crossing that does not have one of the five individual scores available to score cannot be rated. Many of the crossings in this project – due to a variety of reasons – did not have the applicable data available to score. More specifically, crossings not considered applicable to the GC screening assessment include tidal crossings as well as crossings over ephemeral or intermittent watercourses. Tidal crossings are considered to have their own geomorphic properties that are not quite applicable to this screening tool, as do ephemeral or intermittent streams. Crossings that are at impoundments are also not considered for this tool.

Appendix

Table A1. Crossing IDs and Locations									
Crossing #	Town	Road	Stream	Latitude	Longitude				
				dec. deg.	dec. deg.				
1	Rollinsford	Jessie Doe Rd	Unnamed	43.235676	-70.8276665				
2	Rollinsford	Willey St	Unnamed	43.2309872	-70.8246759				
3	Rollinsford	Watson Ln	Fresh Creek	43.2293642	-70.8414293				
4	Rollinsford	Sligo Rd	Unnamed	43.2193009	-70.8147081				
5	Rollinsford	Sligo Rd	Sligo Brook	43.2084471	-70.8221013				
6	Rollinsford	Old Mill Rd	Fresh Creek	43.2071739	-70.8435301				
7	Dover	Pickering Rd	Blackwater Brook	43.2389082	-70.935895				
8	Dover	Long Hill Rd	Tryner's Brook	43.2323679	-70.9126412				
9	Dover	Sixth St	Reyner's Brook	43.2217175	-70.9192522				
10	Dover	County Farm Rd	Jackson Brook	43.2182893	-70.9327253				
11	Dover	County Farm Rd	Reyner's Brook	43.2170987	-70.9244239				
12	Dover	Portland Av	Unnamed	43.2012826	-70.8658568				
13	Dover	Atlantic Av	Unnamed	43.2007374	-70.8620219				
14	Dover	Bellamy Rd	Unnamed	43.1807772	-70.8893154				
15	Dover	Bellamy Rd	Bellamy River	43.1802628	-70.8896329				
16	Dover	Drew Rd	Unnamed	43.153837	-70.879365				
17	Dover	Garrison Ln	Unnamed	43.158355	-70.8647357				
18	Dover	Spur Rd	Varney Brook	43.1595093	-70.8512049				
19	Madbury	Nute Rd	Unnamed	43.193481	-70.979304				
20	Madbury	Nute Rd	Bellamy River	43.188648	-70.977374				
21	Madbury	Mill Hill Rd	Bellamy River	43.1801207	-70.9479113				
22	Madbury	Hayes Rd	Unnamed	43.1773719	-70.9676869				
23	Madbury	Hayes Rd	Unnamed	43.1744565	-70.9527854				
24	Madbury	Cherry Hill Ln	Unnamed	43.169324	-70.967073				
25	Madbury	Sarah Paul Hill Rd	Gerrish Brook	43.159239	-70.934008				
26	Madbury	Madbury Rd	Beard's Creek	43.1589148	-70.9332285				
27	Madbury	Freshett Rd	Johnson Creek	43.1495707	-70.8899917				
28	Durham	Madbury Rd	Littlehale Creek	43.1457	-70.928338				
29	Durham	Edgewood Rd	Littlehale Creek	43.145131	-70.927258				
30	Durham	Bagdad	Littlehale Creek	43.142982	-70.921207				
31	Durham	Madbury Rd	Pettee Brook	43.135127	-70.925105				
32	Durham	Griffith Rd	Chesley Brook	43.117429	-70.966656				
33	Durham	Bennett Rd	Woodman Brook	43.107001	-70.945488				
34	Durham	Bennett Rd	La Roche Brook	43.109275	-70.935544				
35	Durham	Bennett Rd	Beaudette Brook	43.1114987	-70.9300179				
36	Durham	Longmarsh Rd	Longmarsh Brook	43.114178	-70.923927				
37	Durham	Newmarket Rd	Hamel Brook	43.118926	-70.922369				
38	Newington	Fox Point Rd	Knight Brook	43.1102364	-70.8452967				
39	Newington	Nimble Hill Rd	Nimble Hill Rd Unnamed		-70.8270442				

Table A1. Crossing IDs and Locations									
Crossing	Town	Road	Stream	Latitude	Longitude				
#				dec. deg.	dec. deg.				
40	Newington	Shattuck Wy	Unnamed	43.1124072	-70.8162899				
41	Newington	B&M Railroad	Unnamed	43.1093031	-70.8064405				
42	Newington	Little Bay Rd	Unnamed	43.101586	-70.84998				
43	Newington	Arboretum Dr	Upper Pickering Bk	43.1025787	-70.8220983				
44	Newington	Arboretum Dr	Flagstone Ditch	43.100929	-70.817042				
45	Newington	Shattuck Wy	Paul Brook	43.100749	-70.80045				
46	Newington	Newington Rd	McIntyre Brook	43.069603	-70.831869				
47	Newington	Newington Rd	Kennard Pond	43.062373	-70.829265				
48	Newmarket	Ash Swamp Rd	Unnamed	43.07865	-70.98635				
49	Newmarket	Grant Rd	Unnamed	43.06373333	-71.00091667				
50	Newmarket	Doe Farm Ln	Unnamed	43.06538333	-70.99846667				
51	Newmarket	Ash Swamp Rd	Unnamed	43.06738333	-70.97741667				
52	Newmarket	Grant Rd	Unnamed	43.061005	-70.975454				
53	Newmarket	Langs Ln	Unnamed	43.07163333	-70.96766667				
54	Newmarket	Grant Rd	Unnamed	43.06451667	-70.9668				
55	Newmarket	Grant Rd	Piscassic River	43.069021	-70.962015				
56	Newmarket	S. Main St	Moonlight Brook	43.073578	-70.945344				
57	Newmarket	Maple St	Moonlight Brook	43.07437	-70.941483				
58	Newmarket	B&M Railroad	Moonlight Brook	43.075398	-70.939248				
59	Newmarket	Bay Rd	Lubberland Creek	43.078261	-70.917646				
60	Newfields	Bald Hill Rd	Unnamed	43.04372	-71.0018				
61	Newfields	Cuba Rd	Piscassic River	43.03423	-70.99703				
62	Newfields	Piscassic Rd	Piscassic River	43.03424	-70.96803				
63	Newfields	Old Lee Rd	Unnamed	43.04354	-70.95882				
64	Newfields	Piscassic Rd	Parting Brook	43.03413	-70.95567				
65	Newfields	Bassett Ln	Parting Brook	43.03186	-70.95496				
66	Newfields	Finn Av	Unnamed	43.02804	-70.95179				
6/	Newfields	Deertrees Ln	Sloan's Brook	43.02259	-70.94638				
68	Newfields	Exeter Rd	Parting Brook	43.03135	-70.94381				
69	Newfields		Unnamed	43.041	-70.93307				
70	Newfields	College Rd	Squamscott River	43.0397	-70.92824				
71	Greenland	Willowbrook Av	Johnson Brook	43.03558	-70.86919				
72	Greenland	Great Bay Rd	Foss Brook	43.03872	-70.86748				
73	Greenland	Coast Wy	Shaw Brook	43.03356	-70.85735				
74	Greenland	Portsmouth Av	Shaw Brook	43.03524	-70.85432				
/5	Greenland	Winnicut Rd	Thompson Brook	43.027339	-70.854287				
/6	Greenland	Bayside Rd	Shaw Brook	43.039994	-/0.850234				
//	Greenland	Portsmouth Av	winnicut River	43.03608	-70.84811				
78	Greenland	Croopland Dd	Dockor Prook	43.035895	-70.846199				
79	Greenland		Norton Brook	43.04155	-70.82188				
01	Greenland	Proakfact Will Rd	Rorry's Brook	45.00972	-70.84277				
10	Greenland			45.010/1	-70.8130				
82	Stratham	Squamscott Rd	Jewell Hill Brook	43.0369427	-70.9219395				

Table A1. Crossing IDs and Locations									
Crossing #	Town	Road	Stream	Latitude	Longitude				
π				dec. deg.	dec. deg.				
83	Stratham	Squamscott Rd	Unnamed	43.037619	-70.917848				
84	Stratham	Squamscott Rd	Unnamed	43.03796	-70.916932				
85	Stratham	Squamscott Rd	Unnamed	43.038876	-70.908154				
86	Stratham	Portsmouth Av	Unnamed	43.030033	-70.909115				
87	Stratham	Portsmouth Av	Jewell Hill Brook	43.0317497	-70.9076094				
88	Stratham	Binum Woods Rd	Mill Brook	43.019932	-70.889577				
89	Stratham	Winnicutt Rd	Winnicutt River	43.0093293	-70.87110348				
90	Stratham	Portsmouth Av	Parkman Brook	42.9950574	-70.9254196				
91	Stratham	Stratham Heights Rd	Unnamed	42.990033	-70.900882				
92	Exeter	Oaklands Rd	Unnamed	43.024643	-70.972332				
93	Exeter	Beech Hill Rd	Beech Hill Brook	43.01793	-70.983882				
94	Exeter	Pine Rd	Unnamed	43.011903	-71.009047				
95	Exeter	Watson Rd	Bloody Brook	43.010306	-70.972743				
96	Exeter	Dogtown Rd	Unnamed	42.9838189	-71.002574				
97	Exeter	Industrial Dr	Watson Brook	42.992017	-70.968756				
98	Exeter	Portsmouth Av	Wheelwright Creek	42.987821	-70.934259				
99	Exeter	Pickpocket Rd	Pennell Pond	42.968967	-70.987823				
100	Exeter	Tamarind Ln	Scamen Brook	42.970573	-70.975324				
101	Exeter	Court St	Little River	42.972578	-70.950964				
102	Exeter	Drinkwater Ln	Unnamed	42.971534	-70.93205				
103	Exeter	Hampton Falls Rd	Unnamed	42.972362	-70.917795				
104	Exeter	Hampton Rd	Ash Brook	42.971468	-70.901271				
105	Exeter	John West Rd	Perkins Brook	42.9596411	-70.9917698				
106	Exeter	Powder Mill Rd Perkins Brook		42.9617046	-70.9821343				

Table A2. Complete Summary of Crossing Ratings								
Crossing	-		Hydrauli	c Ratings		AOP Ratings	GC Ratings	
#	Iown	10-yr	25-yr	50-yr	100-yr	Rating	Rating	
1	Rollinsford	Transitional	Fail	Fail	Fail	No AOP	Partially Compatible	
2	Rollinsford	Pass	Transitional	Transitional	Fail	No AOP	Partially Compatible	
3	Rollinsford	Transitional	Transitional	Fail	Fail	Reduced AOP	Partially Compatible	
4	Rollinsford	Fail	Fail	Fail	Fail	Reduced AOP	Partially Compatible	
5	Rollinsford	Pass	Pass	Pass	Transitional	Reduced AOP	Partially Compatible	
6	Rollinsford	Pass	Pass	Pass	Pass	Full AOP	Mostly Compatible	
7	Dover	Pass	Pass	Transitional	Transitional	Full AOP	Mostly Compatible	
8	Dover	Transitional	Transitional	Transitional	Fail	Reduced AOP	Mostly Compatible	
9	Dover	Pass	Pass	Pass	Transitional	Reduced AOP	Mostly Incompatible	
10	Dover	Transitional	Fail	Fail	Fail	Reduced AOP	Mostly Compatible	
11	Dover	Transitional	Transitional	Transitional	Fail	Reduced AOP	Partially Compatible	
12	Dover	Transitional	Transitional	Transitional	Fail	Reduced AOP	Mostly Compatible	
13	Dover	Fail	Fail	Fail	Fail	No AOP	Mostly Incompatible	
14	Dover	Pass	Pass	Transitional	Transitional	No AOP	Mostly Incompatible	
15	Dover	Pass	Pass	Pass	Pass	Reduced AOP	Mostly Compatible	
16	Dover	Fail	Fail	Fail	Fail	Reduced AOP	Mostly Compatible	
17	Dover	Fail	Fail	Fail	Fail	Reduced AOP	Partially Compatible	
18	Dover	Transitional	Transitional	Transitional	Transitional	Full AOP	Partially Compatible	
19	Madbury	Fail	Fail	Fail	Fail	Reduced AOP	Mostly Compatible	
20	Madbury	Pass	Pass	Pass	Pass	Reduced AOP	Mostly Compatible	
21	Madbury	Pass	Pass	Pass	Pass	Reduced AOP	Partially Compatible	
22	Madbury	Fail	Fail	Fail	Fail	Reduced AOP	Mostly Incompatible	
23	Madbury	Transitional	Transitional	Fail	Fail	No AOP	Mostly Incompatible	
24	Madbury	Fail	Fail	Fail	Fail	No AOP	Mostly Compatible	
25	Madbury	Transitional	Transitional	Transitional	Fail	Reduced AOP	Partially Compatible	
26	Madbury	Transitional	Fail	Fail	Fail	Reduced AOP	Partially Compatible	
27	Madbury	Pass	Pass	Pass	Pass	No AOP**	Partially Compatible	
28	Durham	Fail	Fail	Fail	Fail	No AOP	Partially Compatible	
29	Durham	Transitional	Fail	Fail	Fail	Reduced AOP	Partially Compatible	
30	Durham	Fail	Fail	Fail	Fail	Reduced AOP	Partially Compatible	
31	Durham	Transitional	Transitional	Transitional	Transitional	Full AOP	Mostly Compatible	
32	Durham	Fail	Fail	Fail	Fail	Reduced AOP	Mostly Compatible	
33	Durham	Fail	Fail	Fail	Fail	No AOP	Partially Compatible	
34	Durham	Fail	Fail	Fail	Fail	Reduced AOP	Partially Compatible	
35	Durham	Fail	Fail	Fail	Fail	Reduced AOP	Mostly Compatible	
36	Durham	Fail	Fail	Fail	Fail	Reduced AOP	Fully Compatible	
37	Durham	Fail	Fail	Fail	Fail	Full AOP	Mostly Compatible	
38	Newington	Fail	Fail	Fail	Fail	Reduced AOP	Mostly Compatible	
39	Newington	Fail	Fail	Fail	Fail	Reduced AOP	Mostly Incompatible	
40	Newington	Pass	Pass	Transitional	Transitional	Full AOP	Fully Compatible	
41	Newington	Transitional	Transitional	Transitional	Transitional	Reduced AOP	Mostly Compatible	
42	Newington	Transitional	Fail	Fail	Fail	Reduced AOP	Mostly Incompatible	
43	Newington	Pass	Pass	Pass	Pass	Reduced AOP	Mostly Incompatible	
44	Newington	Pass	Pass	Pass	Pass	No AOP	Mostly Compatible	

Table A2. Complete Summary of Crossing Ratings								
Crossing	Taura		Hydrauli	c Ratings		AOP Ratings	GC Ratings	
#	Town	10-yr	25-yr	50-yr	100-yr	Rating	Rating	
45	Newington	Transitional	Fail	Fail	Fail	Reduced AOP	Partially Compatible	
46	Newington	Pass	Pass	Pass	Pass	No AOP	Mostly Compatible	
47	Newington	Pass	Pass	Pass	Transitional	Reduced AOP	Partially Compatible	
48	Newmarket	Fail	Fail	Fail	Fail	Reduced AOP	Fully Compatible	
49	Newmarket	Pass	Transitional	Transitional	Transitional	Reduced AOP	Mostly Compatible	
50	Newmarket	Pass	Transitional	Transitional	Transitional	Reduced AOP	Mostly Compatible	
51	Newmarket	Fail	Fail	Fail	Fail	Reduced AOP	Mostly Compatible	
52	Newmarket	Transitional	Fail	Fail	Fail	Reduced AOP	Mostly Compatible	
53	Newmarket	Pass	Transitional	Transitional	Fail	No AOP	Partially Compatible	
54	Newmarket	Pass	Transitional	Transitional	Transitional	Reduced AOP	Mostly Compatible	
55	Newmarket	Pass	Pass	Pass	Pass	Full AOP	Mostly Compatible	
56	Newmarket	Transitional	Transitional	Transitional	Fail	Reduced AOP	Partially Compatible	
57	Newmarket	Transitional	Transitional	Transitional	Transitional	Reduced AOP	Mostly Compatible	
58	Newmarket	Transitional	Transitional	Transitional	Fail	Full AOP	Partially Compatible	
59	Newmarket	Fail	Fail	Fail	Fail	No AOP	Mostly Incompatible	
60	Newfields	Pass	Pass	Pass	Transitional	Full AOP	Fully Compatible	
61	Newfields	Transitional	Transitional	Fail	Fail	Full AOP	Mostly Compatible	
62	Newfields	Pass	Pass	Pass	Pass	Reduced AOP	Partially Compatible	
63	Newfields	Fail	Fail	Fail	Fail	Reduced AOP	Mostly Compatible	
64	Newfields	Pass	Transitional	Transitional	Transitional	Reduced AOP	Mostly Compatible	
65	Newfields	Pass	Pass	Pass	Transitional	Reduced AOP	Mostly Incompatible	
66	Newfields	Pass	Pass	Pass	Transitional	Reduced AOP	Mostly Compatible	
67	Newfields	Pass	Pass	Transitional	Fail	No AOP	Mostly Compatible	
68	Newfields	Transitional	Fail	Fail	Fail	Reduced AOP	Partially Compatible	
69	Newfields	Pass	Pass	Fail	Fail	NO AOP	Partially Compatible	
70	Newfields	-	-	-	-	-	-	
71	Greenland	Transitional	Transitional	Fail	Fail	No AOP	Mostly Compatible	
72	Greenland	Fail	Fail	Fail	Fail	Reduced AOP	Partially Compatible	
73	Greenland	Fail	Fail	Fail	Fail	Reduced AOP	Mostly Compatible	
/4	Greenland	Transitional	Transitional	Iransitional	Fail	Reduced AOP	Mostly Incompatible	
75	Greenland	Pass	Pass	Pass	Pass	NO AUP	Partially Compatible	
70	Greenland	Fall	Faii	Fall	Fall	Reduced AOP	Partially Compatible	
77	Greenland	Transitional	Eail	Eail	Fass	Reduced AOP	Partially Compatible	
70	Greenland	Pass	Pass	Pass	Transitional	Reduced AOP	Mostly Compatible	
80	Greenland	Transitional	Transitional	Transitional	Transitional	Reduced AOP	Partially Compatible	
81	Greenland	Transitional	Fail	Fail	Fail		Partially Compatible	
82	Stratham	Dace	Transitional	Transitional	Transitional			
82	Stratham	Transitional	Transitional	Fail	Fail		Mostly Compatible	
84	Stratham	Fail	Fail	Fail	Fail		Fully Compatible	
85	Stratham	Pass	Transitional	Transitional	Fail		Mostly Incompatible	
86	Stratham	Transitional	Transitional	Transitional	Fail	Reduced AOP	Partially Compatible	
87	Stratham	Pass	Transitional	Transitional	Fail	No AOP	Partially Compatible	
88	Stratham	Fail	Fail	Fail	Fail	Reduced AOP	Partially Compatible	

Table A2. Complete Summary of Crossing Ratings								
Crossing	Taura		Hydrauli	c Ratings	AOP Ratings	GC Ratings		
#	# Town	10-yr	25-yr	50-yr	100-yr	Rating	Rating	
89	Stratham	Pass	Pass	Pass	Pass	Reduced AOP	Partially Compatible	
90	Stratham	Pass	Pass	Pass	Pass	No AOP	Partially Compatible	
91	Stratham	Fail	Fail	Fail	Fail	Reduced AOP	Partially Compatible	
92	Exeter	Transitional	Fail	Fail	Fail	Reduced AOP	Mostly Compatible	
93	Exeter	Fail	Fail	Fail	Fail	Reduced AOP	Mostly Compatible	
94	Exeter	Pass	Pass	Pass	Pass	Full AOP	Fully Compatible	
95	Exeter	Fail	Fail	Fail	Fail	Reduced AOP	Mostly Incompatible	
96	Exeter	Fail	Fail	Fail	Fail	Reduced AOP	Mostly Compatible	
97	Exeter	Transitional	Transitional	Transitional	Transitional	Full AOP	Mostly Compatible	
98	Exeter	Pass	Pass	Pass	Pass	Reduced AOP	Mostly Compatible	
99	Exeter	Pass	Transitional	Fail	Fail	Reduced AOP	Mostly Compatible	
100	Exeter	Fail	Fail	Fail	Fail	Reduced AOP	Mostly Compatible	
101	Exeter	Transitional	Transitional	Transitional	Transitional	Reduced AOP	Partially Compatible	
102	Exeter	Transitional	Fail	Fail	Fail	Reduced AOP	Mostly Compatible	
103	Exeter	Transitional	Fail	Fail	Fail	Reduced AOP	Partially Compatible	
104	Exeter	Transitional	Fail	Fail	Fail	Reduced AOP	Mostly Compatible	
105	Exeter	Fail	Fail	Fail	Fail	No AOP	Mostly Compatible	
106	Exeter	Fail	Fail	Fail	Fail	Reduced AOP	Partially Compatible	